Suppr超能文献

高光谱视网膜成像作为一种非侵入性标志物,用于确定大脑淀粉样状态。

Hyperspectral Retinal Imaging as a Non-Invasive Marker to Determine Brain Amyloid Status.

机构信息

Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.

Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

出版信息

J Alzheimers Dis. 2024;100(s1):S131-S152. doi: 10.3233/JAD-240631.

Abstract

BACKGROUND

As an extension of the central nervous system (CNS), the retina shares many similarities with the brain and can manifest signs of various neurological diseases, including Alzheimer's disease (AD).

OBJECTIVE

To investigate the retinal spectral features and develop a classification model to differentiate individuals with different brain amyloid levels.

METHODS

Sixty-six participants with varying brain amyloid-β protein levels were non-invasively imaged using a hyperspectral retinal camera in the wavelength range of 450-900 nm in 5 nm steps. Multiple retina features from the central and superior views were selected and analyzed to identify their variability among individuals with different brain amyloid loads.

RESULTS

The retinal reflectance spectra in the 450-585 nm wavelengths exhibited a significant difference in individuals with increasing brain amyloid. The retinal features in the superior view showed higher inter-subject variability. A classification model was trained to differentiate individuals with varying amyloid levels using the spectra of extracted retinal features. The performance of the spectral classification model was dependent upon retinal features and showed 0.758-0.879 accuracy, 0.718-0.909 sensitivity, 0.764-0.912 specificity, and 0.745-0.891 area under curve for the right eye.

CONCLUSIONS

This study highlights the spectral variation of retinal features associated with brain amyloid loads. It also demonstrates the feasibility of the retinal hyperspectral imaging technique as a potential method to identify individuals in the preclinical phase of AD as an inexpensive alternative to brain imaging.

摘要

背景

视网膜作为中枢神经系统(CNS)的延伸,与大脑有许多相似之处,可以表现出各种神经疾病的迹象,包括阿尔茨海默病(AD)。

目的

研究视网膜的光谱特征,并开发一种分类模型来区分不同脑内淀粉样蛋白水平的个体。

方法

使用超光谱视网膜相机,在 450-900nm 的波长范围内以 5nm 的步长对 66 名具有不同脑内淀粉样蛋白-β 蛋白水平的参与者进行非侵入性成像。从中央和上视图中选择并分析多个视网膜特征,以确定它们在不同脑淀粉样蛋白负荷个体之间的变异性。

结果

在波长为 450-585nm 的视网膜反射光谱中,脑内淀粉样蛋白含量增加的个体之间存在显著差异。上视图中的视网膜特征表现出更高的个体间变异性。使用提取的视网膜特征的光谱,训练分类模型以区分具有不同淀粉样蛋白水平的个体。光谱分类模型的性能取决于视网膜特征,其右眼的准确率为 0.758-0.879、灵敏度为 0.718-0.909、特异性为 0.764-0.912、曲线下面积为 0.745-0.891。

结论

本研究强调了与脑淀粉样蛋白负荷相关的视网膜特征的光谱变化。它还证明了视网膜高光谱成像技术作为一种识别 AD 临床前阶段个体的潜在方法的可行性,作为脑成像的廉价替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验