Teng Xiaokun, Tam David W, Chen Lebing, Tan Hengxin, Xie Yaofeng, Gao Bin, Granroth Garrett E, Ivanov Alexandre, Bourges Philippe, Yan Binghai, Yi Ming, Dai Pengcheng
Department of Physics and Astronomy, <a href="https://ror.org/008zs3103">Rice University</a>, Houston, Texas 77005, USA.
Laboratory for Neutron Scattering and Imaging, <a href="https://ror.org/03eh3y714">Paul Scherrer Institut</a>, 5232 Villigen, Switzerland.
Phys Rev Lett. 2024 Jul 26;133(4):046502. doi: 10.1103/PhysRevLett.133.046502.
Understanding spin and lattice excitations in a metallic magnetic ordered system forms the basis to unveil the magnetic and lattice exchange couplings and their interactions with itinerant electrons. Kagome lattice antiferromagnet FeGe is interesting because it displays a rare charge density wave (CDW) deep inside the antiferromagnetic ordered phase that interacts with the magnetic order. We use neutron scattering to study the evolution of spin and lattice excitations across the CDW transition T_{CDW} in FeGe. While spin excitations below ∼100 meV can be well described by spin waves of a spin-1 Heisenberg Hamiltonian, spin excitations at higher energies are centered around the Brillouin zone boundary and extend up to ∼180 meV consistent with quasiparticle excitations across spin-polarized electron-hole Fermi surfaces. Furthermore, c-axis spin wave dispersion and Fe-Ge optical phonon modes show a clear hardening below T_{CDW} due to spin-charge-lattice coupling but with no evidence of a phonon Kohn anomaly. By comparing our experimental results with density functional theory calculations in absolute units, we conclude that FeGe is a Hund's metal in the intermediate correlated regime where magnetism has contributions from both itinerant and localized electrons arising from spin polarized electronic bands near the Fermi level.
理解金属磁有序系统中的自旋和晶格激发是揭示磁和晶格交换耦合及其与巡游电子相互作用的基础。 Kagome晶格反铁磁体FeGe很有趣,因为它在反铁磁有序相的深处显示出一种罕见的电荷密度波(CDW),该电荷密度波与磁有序相互作用。我们使用中子散射来研究FeGe中CDW转变温度T_{CDW}处自旋和晶格激发的演化。虽然低于约100 meV的自旋激发可以用自旋为1的海森堡哈密顿量的自旋波很好地描述,但较高能量的自旋激发集中在布里渊区边界附近,并延伸至约180 meV,这与跨越自旋极化电子 - 空穴费米面的准粒子激发一致。此外,由于自旋 - 电荷 - 晶格耦合,c轴自旋波色散和Fe - Ge光学声子模式在T_{CDW}以下显示出明显的硬化,但没有声子科恩反常的迹象。通过将我们的实验结果与绝对单位的密度泛函理论计算进行比较,我们得出结论,FeGe是中间关联区域的洪德金属,其中磁性来自费米能级附近自旋极化电子能带中巡游电子和局域电子的贡献。