Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.
Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.
J Biol Chem. 2024 Sep;300(9):107644. doi: 10.1016/j.jbc.2024.107644. Epub 2024 Aug 8.
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Cdc14 磷酸酶在结构和机制上与蛋白酪氨酸磷酸酶(PTPs)相关,但进化出了对主要由细胞周期蛋白依赖性激酶沉积的磷酸丝氨酸-脯氨酸-X-赖氨酸/精氨酸位点的独特特异性。这种特化在真核生物中广泛保守。Cdc14 活性位点的进化重新配置以选择性容纳磷酸丝氨酸-脯氨酸可能需要对典型的 PTP 催化循环进行修饰。在研究酿酒酵母 Cdc14 时,我们在远离催化结构域的无序 C 端发现了一个短序列,该序列模拟了一个最佳底物。动力学分析表明,这个伪底物结合活性位点并强烈刺激限速磷酸酶水解,我们将其命名为“底物样催化增强子”(SLiCE)。SLiCE 基序存在于所有的担子菌类真菌 Cdc14 同源物中,并且包含一个不变的谷氨酰胺,我们推测它通过底物样接触来定位,以辅助水解水的取向,类似于其他 Cdc14 缺乏的 PTP 中的保守活性位点谷氨酰胺。AlphaFold2 预测表明脊椎动物 Cdc14 同源物包含一个与活性位点结合的保守 C 端α螺旋。尽管与真菌序列显然没有关系,但这个基序也与催化口袋中的底物样接触和不变的谷氨酰胺结合。改变人类 Cdc14A 和 Cdc14B 中的这些残基表明,它的功能与真菌基序相同。然而,真菌和脊椎动物 SLiCE 基序不能在功能上互换,这说明了在催化过程中潜在的活性位点差异。最后,我们表明真菌 SLiCE 基序是 Cdc14 活性磷酸化调节的靶标。我们的研究揭示了 Cdc14 磷酸酶中一种不寻常的刺激型伪底物基序的进化。