Departamento de Informática, Universidad Tecnica Federico Santa Maria, Campus Vitacura-Santiago, Vitacura 7660251, Chile.
DETEM, Faculty of Medicine, Universidad de Chile, Independencia-Santiago, Santiago 8380453, Chile.
Sensors (Basel). 2024 Aug 1;24(15):4985. doi: 10.3390/s24154985.
This article presents an ingestion procedure towards an interoperable repository called ALPACS (Anonymized Local Picture Archiving and Communication System). ALPACS provides services to clinical and hospital users, who can access the repository data through an Artificial Intelligence (AI) application called PROXIMITY. This article shows the automated procedure for data ingestion from the medical imaging provider to the ALPACS repository. The data ingestion procedure was successfully applied by the data provider (Hospital Clínico de la Universidad de Chile, HCUCH) using a pseudo-anonymization algorithm at the source, thereby ensuring that the privacy of patients' sensitive data is respected. Data transfer was carried out using international communication standards for health systems, which allows for replication of the procedure by other institutions that provide medical images.
This article aims to create a repository of 33,000 medical CT images and 33,000 diagnostic reports with international standards (HL7 HAPI FHIR, DICOM, SNOMED). This goal requires devising a data ingestion procedure that can be replicated by other provider institutions, guaranteeing data privacy by implementing a pseudo-anonymization algorithm at the source, and generating labels from annotations via NLP.
Our approach involves hybrid on-premise/cloud deployment of PACS and FHIR services, including transfer services for anonymized data to populate the repository through a structured ingestion procedure. We used NLP over the diagnostic reports to generate annotations, which were then used to train ML algorithms for content-based similar exam recovery.
We successfully implemented ALPACS and PROXIMITY 2.0, ingesting almost 19,000 thorax CT exams to date along with their corresponding reports.
本文介绍了一种可互操作的存储库 ALPACS(匿名本地图像存档和通信系统)的摄取过程。ALPACS 为临床和医院用户提供服务,他们可以通过名为 PROXIMITY 的人工智能 (AI) 应用程序访问存储库数据。本文展示了从医疗成像提供商到 ALPACS 存储库的自动数据摄取过程。数据提供商(智利大学临床医院,HCUCH)使用源处的伪匿名化算法成功应用了数据摄取过程,从而确保了患者敏感数据的隐私得到尊重。数据传输使用国际卫生系统通信标准进行,允许其他提供医疗图像的机构复制该过程。
本文旨在创建一个包含 33,000 张医疗 CT 图像和 33,000 份诊断报告的存储库,符合国际标准(HL7 HAPI FHIR、DICOM、SNOMED)。这一目标需要设计一种可由其他提供者机构复制的数据摄取过程,通过在源处实施伪匿名化算法来保证数据隐私,并通过自然语言处理 (NLP) 从注释生成标签。
我们的方法涉及混合内部部署/云部署的 PACS 和 FHIR 服务,包括通过结构化摄取过程将匿名数据传输到存储库的服务。我们使用诊断报告上的 NLP 生成注释,然后使用这些注释来训练基于内容的相似检查恢复的 ML 算法。
我们成功实施了 ALPACS 和 PROXIMITY 2.0,迄今为止已摄取了近 19,000 例胸部 CT 检查及其相应的报告。