Suppr超能文献

基于内容的组织病理学图像检索

Content-Based Histopathological Image Retrieval.

作者信息

Nuñez-Fernández Camilo, Farias Humberto, Solar Mauricio

机构信息

Departamento de Informática, Universidad Tecnica Federico Santa Maria, Campus San Joaquin, Santiago 8940897, Chile.

Institute for Multidisciplinary Research, Universidad de La Serena, La Serena 8380453, Chile.

出版信息

Sensors (Basel). 2025 Feb 22;25(5):1350. doi: 10.3390/s25051350.

Abstract

Feature descriptors in histopathological images are an important challenge for the implementation of Content-Based Image Retrieval (CBIR) systems, an essential tool to support pathologists. Deep learning models like Convolutional Neural Networks and Vision Transformers improve the extraction of these feature descriptors. These models typically generate embeddings by leveraging deeper single-scale linear layers or advanced pooling layers. However, these embeddings, by focusing on local spatial details at a single scale, miss out on the richer spatial context from earlier layers. This gap suggests the development of methods that incorporate multi-scale information to enhance the depth and utility of feature descriptors in histopathological image analysis. In this work, we propose the Local-Global Feature Fusion Embedding Model. This proposal is composed of three elements: (1) a pre-trained backbone for feature extraction from multi-scales, (2) a neck branch for local-global feature fusion, and (3) a Generalized Mean (GeM)-based pooling head for feature descriptors. Based on our experiments, the model's neck and head were trained on ImageNet-1k and PanNuke datasets employing the Sub-center ArcFace loss and compared with the state-of-the-art Kimia Path24C dataset for histopathological image retrieval, achieving a Recall@1 of 99.40% for test patches.

摘要

组织病理学图像中的特征描述符是基于内容的图像检索(CBIR)系统实施过程中的一项重大挑战,而CBIR系统是支持病理学家的重要工具。卷积神经网络和视觉Transformer等深度学习模型改进了这些特征描述符的提取。这些模型通常通过利用更深的单尺度线性层或先进的池化层来生成嵌入。然而,这些嵌入由于专注于单一尺度的局部空间细节,错过了早期层中更丰富的空间上下文。这一差距表明需要开发结合多尺度信息的方法,以增强组织病理学图像分析中特征描述符的深度和实用性。在这项工作中,我们提出了局部-全局特征融合嵌入模型。该模型由三个部分组成:(1)用于多尺度特征提取的预训练主干,(2)用于局部-全局特征融合的颈部分支,以及(3)基于广义均值(GeM)的池化头用于特征描述符。基于我们的实验,该模型的颈部和头部在ImageNet-1k和PanNuke数据集上使用子中心弧面损失进行训练,并与用于组织病理学图像检索的最新Kimia Path24C数据集进行比较,测试补丁的召回率@1达到99.40%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5e4/11902497/9cc7a6630334/sensors-25-01350-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验