Suppr超能文献

基于长短期记忆网络和信号融合的叶片榫槽铣削表面质量预测与评估

The Prediction and Evaluation of Surface Quality during the Milling of Blade-Root Grooves Based on a Long Short-Term Memory Network and Signal Fusion.

作者信息

Ni Jing, Chen Kai, Meng Zhen, Li Zuji, Li Ruizhi, Liu Weiguang

机构信息

School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2024 Aug 5;24(15):5055. doi: 10.3390/s24155055.

Abstract

The surface quality of milled blade-root grooves in industrial turbine blades significantly influences their mechanical properties. The surface texture reveals the interaction between the tool and the workpiece during the machining process, which plays a key role in determining the surface quality. In addition, there is a significant correlation between acoustic vibration signals and surface texture features. However, current research on surface quality is still relatively limited, and most considers only a single signal. In this paper, 160 sets of industrial field data were collected by multiple sensors to study the surface quality of a blade-root groove. A surface texture feature prediction method based on acoustic vibration signal fusion is proposed to evaluate the surface quality. Fast Fourier transform (FFT) is used to process the signal, and the clean and smooth features are extracted by combining wavelet denoising and multivariate smoothing denoising. At the same time, based on the gray-level co-occurrence matrix, the surface texture image features of different angles of the blade-root groove are extracted to describe the texture features. The fused acoustic vibration signal features are input, and the texture features are output to establish a texture feature prediction model. After predicting the texture features, the surface quality is evaluated by setting a threshold value. The threshold is selected based on all sample data, and the final judgment accuracy is 90%.

摘要

工业涡轮叶片铣削叶根槽的表面质量对其机械性能有显著影响。表面纹理揭示了加工过程中刀具与工件之间的相互作用,这在决定表面质量方面起着关键作用。此外,声振动信号与表面纹理特征之间存在显著相关性。然而,目前关于表面质量的研究仍然相对有限,且大多只考虑单一信号。本文通过多个传感器收集了160组工业现场数据,以研究叶根槽的表面质量。提出了一种基于声振动信号融合的表面纹理特征预测方法来评估表面质量。采用快速傅里叶变换(FFT)对信号进行处理,并结合小波去噪和多元平滑去噪提取清晰平滑的特征。同时,基于灰度共生矩阵,提取叶根槽不同角度的表面纹理图像特征来描述纹理特征。输入融合后的声振动信号特征,输出纹理特征,建立纹理特征预测模型。在预测纹理特征后,通过设置阈值来评估表面质量。该阈值基于所有样本数据选取,最终判断准确率为90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfaa/11314985/b8e1234be145/sensors-24-05055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验