Wang Wenxin, Xu Lulu, Ye Ruilong, Yang Peng, Zhu Junjie, Jiang Liping, Wu Xingcai
State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Molecules. 2024 Jul 30;29(15):3591. doi: 10.3390/molecules29153591.
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt carbonate nanosheets loaded on nickel foam (VMoCoCOx@NF) are fabricated by facile hydrothermal deposition. Firstly, the mole ratio of V/Mo/Co in the composite is optimized by response surface methodology (RSM). When the optimized composite serves as a bifunctional catalyst, the water-splitting current density achieves 10 mA cm and 100 mA cm at cell voltages of 1.54 V and 1.61 V in a 1.0 M KOH electrolyte with robust stability. Furthermore, characterization is carried out using field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations reveal that the fabricated VMoCoCOx@NF catalyst synergistically decreases the Gibbs free energy of hydrogen and oxygen-containing intermediates, thus accelerating OER/HER catalytic kinetics. Benefiting from the concerted advantages of porous NF substrates and clustered VMoCoCOx nanosheets, the fabricated catalyst exhibits superior electrocatalytic performance. This work presents a novel approach to developing transition metal catalysts for overall water splitting.
为了解决全球能源可持续性问题,开发高效的双功能过渡金属基电催化剂以加速析氢反应(HER)和析氧反应(OER)的动力学至关重要。在此,通过简便的水热沉积法制备了负载在泡沫镍上的异质钼和钒共掺杂碳酸钴纳米片(VMoCoCOx@NF)。首先,采用响应面法(RSM)优化了复合材料中V/Mo/Co的摩尔比。当优化后的复合材料用作双功能催化剂时,在1.0 M KOH电解液中,水分解电流密度在1.54 V和1.61 V的电池电压下分别达到10 mA cm²和100 mA cm²,且具有很强的稳定性。此外,使用场发射扫描电子显微镜 - 能谱仪(FESEM - EDS)、高分辨率透射电子显微镜(HRTEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)进行了表征。密度泛函理论(DFT)计算表明,制备的VMoCoCOx@NF催化剂协同降低了含氢和含氧中间体的吉布斯自由能,从而加速了OER/HER催化动力学。得益于多孔NF基底和聚集的VMoCoCOx纳米片的协同优势,制备的催化剂表现出优异的电催化性能。这项工作提出了一种开发用于全水分裂的过渡金属催化剂的新方法。