Cadenbach Thomas, Sanchez Valeria, Vizuete Karla, Debut Alexis, Reinoso Carlos, Benitez Maria J
Departamento de Ingeniería Ambiental, Instituto de Energía y Materiales, Colegio Politécnico de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador.
Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador.
Molecules. 2024 Jul 30;29(15):3592. doi: 10.3390/molecules29153592.
Semiconductor hollow spheres have garnered significant attention in recent years due to their unique structural properties and enhanced surface area, which are advantageous for various applications in catalysis, energy storage, and sensing. The present study explores the surfactant-assisted synthesis of bismuth ferrite (BiFeO) hollow spheres, emphasizing their enhanced visible-light photocatalytic activity. Utilizing a novel, facile, two-step evaporation-induced self-assembly (EISA) approach, monodisperse BiFeO hollow spheres were synthesized with a narrow particle size distribution. The synthesis involved Bi/Fe citrate complexes as precursors and the triblock copolymer Pluronic P123 as a soft template. The BiFeO hollow spheres demonstrated outstanding photocatalytic performance in degrading the emerging pollutants Rhodamine B and metronidazole under visible-light irradiation (100% degradation of Rhodamine B in <140 min and of metronidazole in 240 min). The active species in the photocatalytic process were identified through trapping experiments, providing crucial insights into the mechanisms and efficiency of semiconductor hollow spheres. The findings suggest that the unique structural features of BiFeO hollow spheres, combined with their excellent optical properties, make them promising candidates for photocatalytic applications.
近年来,半导体空心球因其独特的结构特性和增大的表面积而备受关注,这有利于其在催化、能量存储和传感等各种应用中发挥作用。本研究探索了表面活性剂辅助合成铋铁氧体(BiFeO)空心球的方法,重点关注其增强的可见光光催化活性。利用一种新颖、简便的两步蒸发诱导自组装(EISA)方法,合成了粒径分布窄的单分散BiFeO空心球。合成过程中使用Bi/Fe柠檬酸盐络合物作为前驱体,三嵌段共聚物Pluronic P123作为软模板。BiFeO空心球在可见光照射下对新兴污染物罗丹明B和甲硝唑具有出色的光催化降解性能(在<140分钟内可将罗丹明B完全降解,在240分钟内可将甲硝唑完全降解)。通过捕获实验确定了光催化过程中的活性物种,为深入了解半导体空心球的作用机制和效率提供了关键信息。研究结果表明,BiFeO空心球独特的结构特征及其优异的光学性能使其成为光催化应用的有潜力候选材料。