Kasprzak Adam
Department of Machine Design and Research, Wrocław University of Science and Technology, Łukasiewicza 7/9, 50-371 Wroclaw, Poland.
Robert Bosch Sp. z o. o., Wrocławska 43, 55-095 Mirków, Poland.
Polymers (Basel). 2024 Jul 26;16(15):2128. doi: 10.3390/polym16152128.
This article raises the topic of the critical examination of polypropylene, a key polymeric material, and its extensive application within the automotive industry, particularly focusing on the manufacturing of brake fluid reservoirs. This study aims to enhance the understanding of polypropylene's behavior under mechanical stresses through a series of laboratory destruction tests and numerical simulations, emphasizing the finite element method (FEM). A novel aspect of this research is the introduction of the PEAK parameter, a groundbreaking approach designed to assess the material's resilience against varying states of strain, known as triaxiality. This parameter facilitates the identification of critical areas prone to crack initiation, thereby enabling the optimization of component design with a minimized safety margin, which is crucial for cost-effective production. The methodology involves conducting burst tests to locate crack initiation sites, followed by FEM simulations to determine the PEAK threshold value for the Sabic 83MF10 polypropylene material. The study successfully validates the predictive capability of the PEAK parameter, demonstrating a high correlation between simulated results and actual laboratory tests. This validation underscores the potential of the PEAK parameter as a predictive tool for enhancing the reliability and safety of polypropylene automotive components. The research presented in this article contributes significantly to the field of material science and engineering by providing a deeper insight into the mechanical behavior of polypropylene and introducing an effective tool for predicting crack initiation in automotive components. The findings hold promise for advancing the design and manufacturing processes in the automotive industry, with potential applications extending to other sectors.
本文提出了对关键聚合物材料聚丙烯进行批判性审视的主题,以及它在汽车行业的广泛应用,尤其聚焦于制动液储液罐的制造。本研究旨在通过一系列实验室破坏试验和数值模拟,特别是有限元方法(FEM),来加深对聚丙烯在机械应力下行为的理解。本研究的一个新颖之处在于引入了PEAK参数,这是一种开创性的方法,旨在评估材料抵抗不同应变状态(即三轴性)的韧性。该参数有助于识别容易产生裂纹起始的关键区域,从而能够以最小的安全裕度优化部件设计,这对于具有成本效益的生产至关重要。该方法包括进行爆破试验以确定裂纹起始位置,随后进行有限元模拟以确定Sabic 83MF10聚丙烯材料的PEAK阈值。该研究成功验证了PEAK参数的预测能力,表明模拟结果与实际实验室测试之间具有高度相关性。这种验证强调了PEAK参数作为一种预测工具对于提高聚丙烯汽车部件可靠性和安全性的潜力。本文所呈现的研究通过更深入地洞察聚丙烯的机械行为并引入一种预测汽车部件裂纹起始的有效工具,对材料科学与工程领域做出了重大贡献。这些发现有望推动汽车行业设计和制造工艺的发展,其潜在应用还可扩展到其他领域。