Suppr超能文献

将钴镍纳米颗粒封装到氮掺杂碳纳米管阵列中作为可充电锌空气电池的双功能氧电催化剂。

Encapsulating CoNi nanoparticles into nitrogen-doped carbon nanotube arrays as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries.

作者信息

Shen Yu, Yan Feng, Yang Huan, Xu Jia, Geng Bo, Liu Lina, Zhu Chunling, Zhang Xitian, Chen Yujin

机构信息

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt A):842-852. doi: 10.1016/j.jcis.2024.07.227. Epub 2024 Jul 29.

Abstract

The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.

摘要

锌空气电池(ZABs)具有较高的理论比能量和环境友好性,因此备受关注。然而,ZABs的实际应用需要克服与氧还原反应(ORR)和析氧反应(OER)相关的缓慢动力学。在此,合成了一种由碳纤维布上的CoNi纳米颗粒包裹的三维自支撑氮掺杂碳纳米管(N-CNTs)阵列(CoNi@N-CNTs/CFC),作为用于OER和ORR的双功能催化剂。三维互连的N-CNTs阵列不仅提高了电极的导电性、渗透和气体逸出能力,还增强了CoNi金属的耐腐蚀性。密度泛函理论(DFT)计算表明,Co和Ni的共存协同降低了OOH转化为OH的能垒,从而优化了催化剂的吉布斯自由能。此外,对速率决定步骤中能垒变化的分析表明,OER的主要催化活性中心是Ni位点。结果,CoNi@N-CNTs/CFC表现出优异的催化活性,在10 mA cm下对OER的过电位为240 mV,对ORR的起始电位为0.92 V。此外,将CoNi@N-CNTs/CFC用于液态和固态ZABs时表现出卓越的稳定性,分别实现了持续100小时和15小时的稳定循环运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验