Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States.
Posit PBC, Boston, MA 02210, United States.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2440-2446. doi: 10.1093/jamia/ocae182.
OBJECTIVES: To address the need for interactive visualization tools and databases in characterizing multimorbidity patterns across different populations, we developed the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME). This tool leverages three large-scale EHR systems to facilitate efficient analysis and visualization of disease multimorbidity, aiming to reveal both robust and novel disease associations that are consistent across different systems and to provide insight for enhancing personalized healthcare strategies. MATERIALS AND METHODS: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities, utilizing data from Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. It offers interactive and multifaceted visualizations for exploring multimorbidity. Incorporating an enhanced version of associationSubgraphs, PheMIME also enables dynamic analysis and inference of disease clusters, promoting the discovery of complex multimorbidity patterns. A case study on schizophrenia demonstrates its capability for generating interactive visualizations of multimorbidity networks within and across multiple systems. Additionally, PheMIME supports diverse multimorbidity-based discoveries, detailed further in online case studies. RESULTS: The PheMIME is accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial and multiple case studies for demonstration are available at https://prod.tbilab.org/PheMIME_supplementary_materials/. The source code can be downloaded from https://github.com/tbilab/PheMIME. DISCUSSION: PheMIME represents a significant advancement in medical informatics, offering an efficient solution for accessing, analyzing, and interpreting the complex and noisy real-world patient data in electronic health records. CONCLUSION: PheMIME provides an extensive multimorbidity knowledge base that consolidates data from three EHR systems, and it is a novel interactive tool designed to analyze and visualize multimorbidities across multiple EHR datasets. It stands out as the first of its kind to offer extensive multimorbidity knowledge integration with substantial support for efficient online analysis and interactive visualization.
目的:为满足在不同人群中对多疾病模式进行交互式可视化工具和数据库分析的需求,我们开发了 Phenome-wide Multi-Institutional Multimorbidity Explorer(PheMIME)。该工具利用三个大型电子健康记录系统来促进疾病多态性的高效分析和可视化,旨在揭示跨不同系统一致的稳健和新颖的疾病关联,并为增强个性化医疗策略提供见解。
材料和方法:PheMIME 整合了来自范德比尔特大学医学中心、马萨诸塞州综合医院和英国生物银行的疾病多态性全表型分析的汇总统计数据,提供了用于探索多态性的交互式和多方面可视化。PheMIME 结合了 AssociationSubgraphs 的增强版本,还能够对疾病群集进行动态分析和推断,促进复杂多态性模式的发现。一项关于精神分裂症的案例研究展示了它在多个系统内和系统间生成多态性网络交互式可视化的能力。此外,PheMIME 支持多种基于多态性的发现,详细信息可在在线案例研究中找到。
结果:PheMIME 可在 https://prod.tbilab.org/PheMIME/ 上访问。在 https://prod.tbilab.org/PheMIME_supplementary_materials/ 上提供了全面的教程和多个演示案例研究。源代码可从 https://github.com/tbilab/PheMIME 下载。
讨论:PheMIME 是医学信息学的重大进展,为访问、分析和解释电子健康记录中的复杂和嘈杂的真实世界患者数据提供了高效的解决方案。
结论:PheMIME 提供了一个广泛的多态性知识库,该知识库整合了来自三个电子健康记录系统的数据,是一种新颖的交互式工具,用于分析和可视化多个电子健康记录数据集的多态性。它是同类产品中的第一个,提供了广泛的多态性知识整合,并为高效的在线分析和交互式可视化提供了大量支持。
J Am Med Inform Assoc. 2024-11-1
Bioinformatics. 2021-7-19
J Am Med Inform Assoc. 2024-4-19
J Transl Med. 2015-6-19
J Am Med Inform Assoc. 2020-11-1
Am J Hum Genet. 2025-2-6
Biol Psychiatry Glob Open Sci. 2024-2-28
Biol Psychiatry Glob Open Sci. 2024-2-28
Medicine (Baltimore). 2023-10-6
Br J Gen Pract. 2022-11
Nat Rev Dis Primers. 2022-7-14