文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PheMIME:一个交互式网络应用程序和知识库,用于进行表型广泛的、多机构的多病种分析。

PheMIME: an interactive web app and knowledge base for phenome-wide, multi-institutional multimorbidity analysis.

机构信息

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States.

Posit PBC, Boston, MA 02210, United States.

出版信息

J Am Med Inform Assoc. 2024 Nov 1;31(11):2440-2446. doi: 10.1093/jamia/ocae182.


DOI:10.1093/jamia/ocae182
PMID:39127052
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11491640/
Abstract

OBJECTIVES: To address the need for interactive visualization tools and databases in characterizing multimorbidity patterns across different populations, we developed the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME). This tool leverages three large-scale EHR systems to facilitate efficient analysis and visualization of disease multimorbidity, aiming to reveal both robust and novel disease associations that are consistent across different systems and to provide insight for enhancing personalized healthcare strategies. MATERIALS AND METHODS: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities, utilizing data from Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. It offers interactive and multifaceted visualizations for exploring multimorbidity. Incorporating an enhanced version of associationSubgraphs, PheMIME also enables dynamic analysis and inference of disease clusters, promoting the discovery of complex multimorbidity patterns. A case study on schizophrenia demonstrates its capability for generating interactive visualizations of multimorbidity networks within and across multiple systems. Additionally, PheMIME supports diverse multimorbidity-based discoveries, detailed further in online case studies. RESULTS: The PheMIME is accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial and multiple case studies for demonstration are available at https://prod.tbilab.org/PheMIME_supplementary_materials/. The source code can be downloaded from https://github.com/tbilab/PheMIME. DISCUSSION: PheMIME represents a significant advancement in medical informatics, offering an efficient solution for accessing, analyzing, and interpreting the complex and noisy real-world patient data in electronic health records. CONCLUSION: PheMIME provides an extensive multimorbidity knowledge base that consolidates data from three EHR systems, and it is a novel interactive tool designed to analyze and visualize multimorbidities across multiple EHR datasets. It stands out as the first of its kind to offer extensive multimorbidity knowledge integration with substantial support for efficient online analysis and interactive visualization.

摘要

目的:为满足在不同人群中对多疾病模式进行交互式可视化工具和数据库分析的需求,我们开发了 Phenome-wide Multi-Institutional Multimorbidity Explorer(PheMIME)。该工具利用三个大型电子健康记录系统来促进疾病多态性的高效分析和可视化,旨在揭示跨不同系统一致的稳健和新颖的疾病关联,并为增强个性化医疗策略提供见解。

材料和方法:PheMIME 整合了来自范德比尔特大学医学中心、马萨诸塞州综合医院和英国生物银行的疾病多态性全表型分析的汇总统计数据,提供了用于探索多态性的交互式和多方面可视化。PheMIME 结合了 AssociationSubgraphs 的增强版本,还能够对疾病群集进行动态分析和推断,促进复杂多态性模式的发现。一项关于精神分裂症的案例研究展示了它在多个系统内和系统间生成多态性网络交互式可视化的能力。此外,PheMIME 支持多种基于多态性的发现,详细信息可在在线案例研究中找到。

结果:PheMIME 可在 https://prod.tbilab.org/PheMIME/ 上访问。在 https://prod.tbilab.org/PheMIME_supplementary_materials/ 上提供了全面的教程和多个演示案例研究。源代码可从 https://github.com/tbilab/PheMIME 下载。

讨论:PheMIME 是医学信息学的重大进展,为访问、分析和解释电子健康记录中的复杂和嘈杂的真实世界患者数据提供了高效的解决方案。

结论:PheMIME 提供了一个广泛的多态性知识库,该知识库整合了来自三个电子健康记录系统的数据,是一种新颖的交互式工具,用于分析和可视化多个电子健康记录数据集的多态性。它是同类产品中的第一个,提供了广泛的多态性知识整合,并为高效的在线分析和交互式可视化提供了大量支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11491640/0e0eb88437c3/ocae182f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11491640/70d161eaf767/ocae182f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11491640/0e0eb88437c3/ocae182f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11491640/70d161eaf767/ocae182f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11491640/0e0eb88437c3/ocae182f2.jpg

相似文献

[1]
PheMIME: an interactive web app and knowledge base for phenome-wide, multi-institutional multimorbidity analysis.

J Am Med Inform Assoc. 2024-11-1

[2]
PheMIME: An Interactive Web App and Knowledge Base for Phenome-Wide, Multi-Institutional Multimorbidity Analysis.

medRxiv. 2023-7-30

[3]
Interactive network-based clustering and investigation of multimorbidity association matrices with associationSubgraphs.

Bioinformatics. 2023-1-1

[4]
PheWAS-ME: a web-app for interactive exploration of multimorbidity patterns in PheWAS.

Bioinformatics. 2021-7-19

[5]
Interoperability of phenome-wide multimorbidity patterns: a comparative study of two large-scale EHR systems.

medRxiv. 2024-5-27

[6]
Centralized Interactive Phenomics Resource: an integrated online phenomics knowledgebase for health data users.

J Am Med Inform Assoc. 2024-4-19

[7]
pyPheWAS Explorer: a visualization tool for exploratory analysis of phenome-disease associations.

JAMIA Open. 2023-4-3

[8]
An interactive web application for the dissemination of human systems immunology data.

J Transl Med. 2015-6-19

[9]
INTEGRATING CLINICAL LABORATORY MEASURES AND ICD-9 CODE DIAGNOSES IN PHENOME-WIDE ASSOCIATION STUDIES.

Pac Symp Biocomput. 2016

[10]
PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.

J Am Med Inform Assoc. 2020-11-1

引用本文的文献

[1]
Gene and phenome-based analysis of the shared genetic architecture of eye diseases.

Am J Hum Genet. 2025-2-6

[2]
Integrating Electronic Health Records and Polygenic Risk to Identify Genetically Unrelated Comorbidities of Schizophrenia That May Be Modifiable.

Biol Psychiatry Glob Open Sci. 2024-2-28

[3]
Interoperability of phenome-wide multimorbidity patterns: a comparative study of two large-scale EHR systems.

medRxiv. 2024-5-27

本文引用的文献

[1]
Integrating Electronic Health Records and Polygenic Risk to Identify Genetically Unrelated Comorbidities of Schizophrenia That May Be Modifiable.

Biol Psychiatry Glob Open Sci. 2024-2-28

[2]
The causal relationship of colorectal cancer on schizophrenia: A Mendelian randomization study.

Medicine (Baltimore). 2023-10-6

[3]
Interactive network-based clustering and investigation of multimorbidity association matrices with associationSubgraphs.

Bioinformatics. 2023-1-1

[4]
Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study.

Lancet Digit Health. 2023-1

[5]
Change in treatment burden among people with multimorbidity: a follow-up survey.

Br J Gen Pract. 2022-11

[6]
Association of Multimorbidity, Disease Clusters, and Modification by Genetic Factors With Risk of Dementia.

JAMA Netw Open. 2022-9-1

[7]
Multimorbidity.

Nat Rev Dis Primers. 2022-7-14

[8]
Multimorbidity patterns and hospitalisation occurrence in adults and older adults aged 50 years or over.

Sci Rep. 2022-7-8

[9]
Variation in the estimated prevalence of multimorbidity: systematic review and meta-analysis of 193 international studies.

BMJ Open. 2022-4-29

[10]
Associations between multimorbidity and adverse health outcomes in UK Biobank and the SAIL Databank: A comparison of longitudinal cohort studies.

PLoS Med. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索