Siddharth Kumar, Pérez-Mercader Juan
Department of Earth and Planetary Sciences and Harvard Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA.
The Santa Fe Institute, Santa Fe, NM, 87501, USA.
Macromol Rapid Commun. 2025 Jan;46(1):e2400392. doi: 10.1002/marc.202400392. Epub 2024 Aug 11.
Two key challenges in the multidisciplinary field of sequence-controlled polymers are their efficient synthesis and the establishment of correlation with polymer properties. In this context, in this paper, gradient architecture in the hydrophobic tail of an amphiphile is implemented and synthesized for a fixed hydrophilic unit (polyethylene glycol, PEG), by means of two monomers (2-hydroxypropyl methacrylate, HPMA, and diacetone acrylamide, DAAM) of contrasting reactivities. The resulting non-biochemical gradient sequence-controlled polymers are generated from a one-pot, homogeneous mixture through a PET-RAFT-PISA (photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer-polymerization-induced self-assembly) method. In addition, the initial concentration ratio of the monomers in the gradient is varied as an input for a set of fixed experimental parameters and conditions, and its correlation with kinetics, gradient and self-assembled morphologies is established, as the output of the process. These results are extensively corroborated via nuclear magnetic resonance (NMR) spectroscopy analysis, together with transmission electron microscopy (TEM) images, dynamic light scattering (DLS), and gel permeation chromatography (GPC) experiments. These results have implications for chemical computation carried out by PISA, programmable self-assembly, information storage, biomimetics, origins of life and synthetic protocell studies.
序列控制聚合物这一多学科领域中的两个关键挑战是其高效合成以及与聚合物性能建立关联。在此背景下,本文针对固定的亲水单元(聚乙二醇,PEG),通过两种反应活性不同的单体(甲基丙烯酸2-羟丙酯,HPMA,和双丙酮丙烯酰胺,DAAM),在两亲分子的疏水尾部实现并合成了梯度结构。所得的非生物化学梯度序列控制聚合物通过一锅法均相混合物,采用光诱导电子/能量转移-可逆加成-断裂链转移-聚合诱导自组装(PET-RAFT-PISA)方法生成。此外,作为一组固定实验参数和条件的输入,改变梯度中单体的初始浓度比,并建立其与动力学、梯度和自组装形态的关联,作为该过程的输出。这些结果通过核磁共振(NMR)光谱分析、透射电子显微镜(TEM)图像、动态光散射(DLS)和凝胶渗透色谱(GPC)实验得到了广泛证实。这些结果对PISA进行的化学计算、可编程自组装、信息存储、仿生学、生命起源和合成原细胞研究具有重要意义。