Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria; Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384, Zone Industrielle, Bou-ismail, Tipaza, RP, 42004, Algeria.
Centre de Recherche en Sciences Pharmaceutiques, Constantine, 25000, Algeria.
Comput Biol Med. 2024 Sep;180:108992. doi: 10.1016/j.compbiomed.2024.108992. Epub 2024 Aug 10.
Computer-aided drug discovery plays a vital role in developing novel medications for various diseases. The COVID-19 pandemic has heightened the need for innovative approaches to design lead compounds with the potential to become effective drugs. Specifically, designing promising inhibitors of the SARS-CoV-2 main protease (Mpro) is crucial, as it plays a key role in viral replication. Phytochemicals, primarily flavonoids and flavonols from medicinal plants, were screened. Fifty small molecules were selected for molecular docking analysis against SARS-CoV-2 Mpro (PDB ID: 6LU7). Binding energies and interactions were analyzed and compared to those of the anti-SARS-CoV-2 inhibitor Nirmatrelvir. Using these 50 structures as a training set, a QSAR model was built employing simple, reversible topological descriptors. An inverse-QSAR analysis was then performed on 2⁹ = 512 hydroxyl combinations at nine possible positions on the flavone and flavonol scaffold. The model predicted three novel, promising compounds exhibiting the most favorable binding energies (-8.5 kcal/mol) among the 512 possible hydroxyl combinations: 3,6,7,2',4'-pentahydroxyflavone (PF9), 6,7,2',4'-tetrahydroxyflavone (PF11), and 3,6,7,4'-tetrahydroxyflavone (PF15). Molecular dynamics (MD) simulations demonstrated the stability of the PF9/Mpro complex over 300 ns of simulation. These predicted structures, reported here for the first time, warrant synthesis and further evaluation of their biological activity through in vitro and in vivo studies.
计算机辅助药物发现在开发各种疾病的新型药物方面发挥着至关重要的作用。COVID-19 大流行加剧了对创新方法的需求,以设计具有成为有效药物潜力的先导化合物。具体来说,设计有前途的 SARS-CoV-2 主蛋白酶(Mpro)抑制剂至关重要,因为它在病毒复制中起着关键作用。筛选了来自药用植物的植物化学物质,主要是类黄酮和黄酮醇。选择了 50 个小分子进行针对 SARS-CoV-2 Mpro(PDB ID:6LU7)的分子对接分析。分析并比较了结合能和相互作用与抗 SARS-CoV-2 抑制剂 Nirmatrelvir 的相互作用。使用这 50 种结构作为训练集,使用简单、可逆的拓扑描述符构建了 QSAR 模型。然后对黄酮和黄酮醇支架上九个可能位置的 2⁹ = 512 个羟基组合进行了逆 QSAR 分析。该模型预测了三种新型、有前途的化合物,它们在 512 种可能的羟基组合中表现出最有利的结合能(-8.5 kcal/mol):3,6,7,2',4'-五羟基黄酮(PF9)、6,7,2',4'-四羟基黄酮(PF11)和 3,6,7,4'-四羟基黄酮(PF15)。分子动力学(MD)模拟表明,PF9/Mpro 复合物在 300 ns 的模拟中稳定。这些首次报道的预测结构值得进一步合成,并通过体外和体内研究评估它们的生物活性。