National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea.
National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea.
Biochem Biophys Res Commun. 2024 Dec 3;736:150519. doi: 10.1016/j.bbrc.2024.150519. Epub 2024 Aug 8.
Heat stress due to global warming adversely affects plant physiology and metabolism, significantly reducing agricultural productivity. Plants have evolved various adaptive mechanisms to cope with such stresses, involving a range of heat stress-responsive proteins. This study investigates the molecular functions and structural changes of OsTDX (Oryza sativa TPR repeat-containing thioredoxin) in rice under heat stress, focusing on its roles as a disulfide reductase and molecular chaperone. OsTDX, sharing a 52 % overall amino acid identity with AtTDX, predominantly forms high molecular weight (HMW) complexes under heat stress conditions. Functional assays revealed that OsTDX exhibited increased disulfide reductase activity in a dose-dependent manner and significantly enhanced holdase chaperone activity, particularly under specific heat stress conditions (60 °C). The structural shift from low molecular weight (LMW) to HMW forms was accompanied by increased hydrophobicity, as indicated by bis-ANS fluorescence intensity measurements. In conclusion, OsTDX exhibits dual functions as a disulfide reductase and a holdase chaperone, with its chaperone activity significantly enhanced under heat stress through structural changes to HMW complexes. These findings contribute to understand the molecular mechanisms of heat tolerance in rice and highlight the potential role of OsTDX in the development of heat-tolerant crops to address crop yield declines due to global warming.
全球变暖导致的热应激会对植物的生理和新陈代谢产生不利影响,从而显著降低农业生产力。植物已经进化出各种适应机制来应对这些压力,涉及一系列热应激响应蛋白。本研究旨在探讨水稻 OsTDX(Oryza sativa TPR repeat-containing thioredoxin)在热应激下的分子功能和结构变化,重点研究其作为二硫键还原酶和分子伴侣的作用。OsTDX 与 AtTDX 的整体氨基酸同一性为 52%,在热应激条件下主要形成高分子量(HMW)复合物。功能分析表明,OsTDX 的二硫键还原酶活性呈剂量依赖性增加,并显著增强了持留酶伴侣活性,特别是在特定的热应激条件(60°C)下。结构从低分子量(LMW)向高分子量(HMW)形式的转变伴随着疏水性的增加,这可以通过双-ANS 荧光强度测量来指示。总之,OsTDX 表现出二硫键还原酶和持留酶伴侣的双重功能,其伴侣活性通过 HMW 复合物的结构变化在热应激下显著增强。这些发现有助于理解水稻耐热性的分子机制,并突出了 OsTDX 在开发耐热作物中的潜在作用,以应对全球变暖导致的作物产量下降。