College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
Neural Netw. 2024 Nov;179:106548. doi: 10.1016/j.neunet.2024.106548. Epub 2024 Jul 16.
This paper proposes a novel fractional-order memristive Hopfield neural network (HNN) to address traveling salesman problem (TSP). Fractional-order memristive HNN can efficiently converge to a globally optimal solution, while conventional HNN tends to become stuck at a local minimum in solving TSP. Incorporating fractional-order calculus and memristors gives the system long-term memory properties and complex chaotic characteristics, resulting in faster convergence speeds and shorter average distances in solving TSP. Moreover, a novel chaotic optimization algorithm based on fractional-order memristive HNN is designed for the calculation process to deal with mutual constraint between convergence accuracy and convergence speed, which circumvents random search and diminishes the rate of invalid solutions. Numerical simulations demonstrate the effectiveness and merits of the proposed algorithm. Furthermore, Field Programmable Gate Array (FPGA) technology is utilized to implement the proposed neural network.
本文提出了一种新颖的分数阶忆阻型 Hopfield 神经网络(HNN)来解决旅行商问题(TSP)。分数阶忆阻 HNN 可以有效地收敛到全局最优解,而传统的 HNN 在解决 TSP 时往往会陷入局部最小值。分数阶微积分和忆阻器的结合赋予了系统长期记忆特性和复杂的混沌特性,从而在解决 TSP 时具有更快的收敛速度和更短的平均距离。此外,还设计了一种新颖的基于分数阶忆阻 HNN 的混沌优化算法用于计算过程,以解决收敛精度和收敛速度之间的相互约束问题,避免了随机搜索并降低了无效解的比例。数值模拟验证了该算法的有效性和优越性。此外,还利用现场可编程门阵列(FPGA)技术实现了所提出的神经网络。