Suppr超能文献

快速收敛的双曲正切 Hopfield 神经网络在优化问题中的应用。

Fast-convergent double-sigmoid Hopfield neural network as applied to optimization problems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Jun;24(6):990-6. doi: 10.1109/TNNLS.2013.2244099.

Abstract

The Hopfield neural network (HNN) has been widely used in numerous different optimization problems since the early 1980s. The convergence speed of the HNN (already in high gain) eventually plays a critical role in various real-time applications. In this brief, we propose and analyze a generalized HNN which drastically improves the convergence speed of the network, and thus allows benefiting from the HNN capabilities in solving the optimization problems in real time. By examining the channel allocation optimization problem in cellular radio systems, which is NP-complete and in which fast solution is necessary due to time-varying link gains, as well as the associative memory problem, computer simulations confirm the dramatic improvement in convergence speed at the expense of using a second nonlinear function in the proposed network.

摘要

自 20 世纪 80 年代初以来,Hopfield 神经网络(HNN)已广泛应用于许多不同的优化问题中。HNN 的收敛速度(已经处于高增益状态)最终在各种实时应用中起着关键作用。在本简讯中,我们提出并分析了一种广义 HNN,它大大提高了网络的收敛速度,从而使 HNN 能够在实时解决优化问题中受益。通过检查蜂窝无线电系统中的信道分配优化问题,该问题是 NP 完全的,由于链路增益随时间变化,因此需要快速解决方案,以及联想记忆问题,计算机模拟证实了在使用所提出的网络中的第二个非线性函数的情况下,收敛速度的显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验