Suppr超能文献

沉积物有机碳负荷通过根际代谢物和微生物群落影响沉水植物恢复的生态效应。

Sedimentary organic matter load influences the ecological effects of submerged macrophyte restoration through rhizosphere metabolites and microbial communities.

机构信息

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan 430062, China.; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China..

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan 430062, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175419. doi: 10.1016/j.scitotenv.2024.175419. Epub 2024 Aug 9.

Abstract

Organic matter (OM) accumulation in lake sediments has doubled owing to human activities over the past 100 years, which has negatively affected the restoration of submerged vegetation and ecological security. Changes in the pollution structure of sediments caused by plant recovery and rhizosphere chemical processes under different sediment OM levels are the theoretical basis for the rational application of plant rehabilitation technology in lake management. This study explored how Vallisneria natans mediates changes in sediment N and P through rhizospheric metabolites and microbial community and function under low (4.94 %) and high (17.35 %) sediment OM levels. V. natans promoted the accumulation of NH-N in the high-OM sediment and the transformation of Fe/Al-P to Ca-P in the low-OM sediment. By analyzing 63 rhizospheric metabolites and the sediment microbial metagenome, the metabolites lactic acid and 3-hydroxybutyric acid and the genus Anammoximicrobium were found to mediate NH-N accumulation in the high-OM sediment. Additionally, 3-hydroxy-decanoic acid, adipic acid, and the genus Bdellovibrionaceae mediated the transformation of Fe/Al-P to Ca-P in the low-OM sediment. The growth of V. natans enriched the abundance of functional genes mediating each step from nitrate to ammonia and the genes encoding urease in the high-OM sediment, and it up-regulated three genes related to microbial phosphorus uptake in the low-OM sediment. This study revealed the necessity of controlling endogenous pollution by recovering submerged macrophytes under high- and low-OM conditions from the perspective of the transformation of inorganic nitrogen and phosphorus.

摘要

过去 100 年来,由于人类活动的影响,湖泊沉积物中的有机物质(OM)积累增加了一倍,这对水下植被的恢复和生态安全产生了负面影响。不同 OM 水平下植物恢复和根际化学过程引起的沉积物污染结构变化,是植物修复技术在湖泊管理中合理应用的理论基础。本研究探讨了在低(4.94%)和高(17.35%)OM 水平下,荇菜如何通过根际代谢产物以及微生物群落和功能来调节沉积物 N 和 P 的变化。荇菜促进了高 OM 沉积物中 NH-N 的积累和低 OM 沉积物中 Fe/Al-P 向 Ca-P 的转化。通过分析 63 种根际代谢产物和沉积物微生物宏基因组,发现代谢产物乳酸和 3-羟基丁酸以及 Anammoximicrobium 属介导了高 OM 沉积物中 NH-N 的积累。此外,3-羟基-癸酸、己二酸和 Bdellovibrionaceae 属介导了低 OM 沉积物中 Fe/Al-P 向 Ca-P 的转化。荇菜的生长增加了介导从硝酸盐到氨的每一步的功能基因以及高 OM 沉积物中脲酶基因的丰度,并上调了低 OM 沉积物中与微生物磷吸收相关的三个基因。本研究从无机氮和磷转化的角度揭示了在高和低 OM 条件下通过恢复沉水植物来控制内源性污染的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验