Suppr超能文献

重组人载脂蛋白 A-I 的泡沫分离研究。

Foam fractionation studies of recombinant human apolipoprotein A-I.

机构信息

Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.

Department of Medicine, Division of Cardiology, McGill University, Montreal, QC, Canada.

出版信息

Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184375. doi: 10.1016/j.bbamem.2024.184375. Epub 2024 Aug 10.

Abstract

Apolipoprotein A-I (apoA-I), the primary protein component of plasma high-density lipoproteins (HDL), is comprised of two structural regions, an N-terminal amphipathic α-helix bundle domain (residues 1-184) and a hydrophobic C-terminal domain (residues 185-243). When a recombinant fusion protein construct [bacterial pelB leader sequence - human apoA-I (1-243)] was expressed in Escherichia coli shaker flask cultures, apoA-I was recovered in the cell lysate. By contrast, when the C-terminal domain was deleted from the construct, large amounts of the truncated protein, apoA-I (1-184), were recovered in the culture medium. Consequently, following pelB leader sequence cleavage in the E. coli periplasmic space, apoA-I (1-184) was secreted from the bacteria. When the pelB-apoA-I (1-184) fusion construct was expressed in a 5 L bioreactor, substantial foam production (~30 L) occurred. Upon foam collection and collapse into a liquid foamate, SDS-PAGE revealed that apoA-I (1-184) was the sole major protein present. Incubation of apoA-I (1-184) with phospholipid vesicles yielded reconstituted HDL (rHDL) particles that were similar in size and cholesterol efflux capacity to those generated with full-length apoA-I. Mass spectrometry analysis confirmed that pelB leader sequence cleavage occurred and that foam fractionation did not result in unwanted protein modifications. The facile nature and scalability of bioreactor-based apolipoprotein foam fractionation provide a novel means to generate a versatile rHDL scaffold protein.

摘要

载脂蛋白 A-I(apoA-I)是血浆高密度脂蛋白(HDL)的主要蛋白成分,由两个结构区域组成,一个是 N 端两亲性α-螺旋束结构域(残基 1-184),另一个是疏水性 C 端结构域(残基 185-243)。当在大肠杆菌摇瓶培养物中表达重组融合蛋白构建体[细菌 pelB 启动子序列-人 apoA-I(1-243)]时,apoA-I 可在细胞裂解物中回收。相比之下,当从构建体中删除 C 端结构域时,大量截短的蛋白 apoA-I(1-184)可在培养基中回收。因此,在大肠杆菌周质空间中 pelB 启动子序列切割后,apoA-I(1-184)从细菌中分泌出来。当 pelB-apoA-I(1-184)融合构建体在 5 L 生物反应器中表达时,会产生大量泡沫(~30 L)。泡沫收集并坍塌成液体泡沫后,SDS-PAGE 显示 apoA-I(1-184)是唯一存在的主要蛋白质。apoA-I(1-184)与磷脂囊泡孵育可生成与全长 apoA-I 生成的大小和胆固醇外排能力相似的重组高密度脂蛋白(rHDL)颗粒。质谱分析证实 pelB 启动子序列切割发生,并且泡沫分级不会导致不需要的蛋白质修饰。基于生物反应器的载脂蛋白泡沫分级的简便性和可扩展性为生成多功能 rHDL 支架蛋白提供了一种新方法。

相似文献

1
Foam fractionation studies of recombinant human apolipoprotein A-I.
Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184375. doi: 10.1016/j.bbamem.2024.184375. Epub 2024 Aug 10.
2
Isolation of recombinant apolipoprotein E4 N-terminal domain by foam fractionation.
Protein Expr Purif. 2023 Oct;210:106319. doi: 10.1016/j.pep.2023.106319. Epub 2023 Jun 6.
3
Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.
Biochim Biophys Acta Biomembr. 2017 Aug;1859(8):1317-1325. doi: 10.1016/j.bbamem.2017.04.017. Epub 2017 Apr 21.
4
Foam fractionation of a recombinant biosurfactant apolipoprotein.
J Biotechnol. 2022 Jan 10;343:25-31. doi: 10.1016/j.jbiotec.2021.11.004. Epub 2021 Nov 19.
5
Structure of apolipoprotein A-I N terminus on nascent high density lipoproteins.
J Biol Chem. 2011 Jan 28;286(4):2966-75. doi: 10.1074/jbc.M110.163097. Epub 2010 Nov 3.
7
Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution.
J Biol Chem. 2010 Oct 15;285(42):31965-73. doi: 10.1074/jbc.M110.126292. Epub 2010 Aug 2.
8
Expression of the C-terminal domain of human apolipoprotein A-I using a chimeric apolipoprotein.
Protein Expr Purif. 2017 Sep;137:13-19. doi: 10.1016/j.pep.2017.06.008. Epub 2017 Jun 15.
10
Bacterial expression and characterization of chicken apolipoprotein A-I.
Protein Expr Purif. 1998 Apr;12(3):353-60. doi: 10.1006/prep.1997.0853.

本文引用的文献

1
Isolation of recombinant apolipoprotein E4 N-terminal domain by foam fractionation.
Protein Expr Purif. 2023 Oct;210:106319. doi: 10.1016/j.pep.2023.106319. Epub 2023 Jun 6.
2
ABCA1, ABCG1, and Cholesterol Homeostasis.
Adv Exp Med Biol. 2022;1377:95-107. doi: 10.1007/978-981-19-1592-5_7.
3
Molecular mechanisms for ABCA1-mediated cholesterol efflux.
Cell Cycle. 2022 Jun;21(11):1121-1139. doi: 10.1080/15384101.2022.2042777. Epub 2022 Feb 22.
4
HDL maturation and remodelling.
Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Apr;1867(4):159119. doi: 10.1016/j.bbalip.2022.159119. Epub 2022 Feb 2.
5
ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis.
J Pharmacol Sci. 2022 Feb;148(2):197-203. doi: 10.1016/j.jphs.2021.11.005. Epub 2021 Dec 1.
6
Foam fractionation of a recombinant biosurfactant apolipoprotein.
J Biotechnol. 2022 Jan 10;343:25-31. doi: 10.1016/j.jbiotec.2021.11.004. Epub 2021 Nov 19.
7
Reconstituted HDL as a therapeutic delivery device.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Nov;1866(11):159025. doi: 10.1016/j.bbalip.2021.159025. Epub 2021 Aug 8.
8
rHDL modeling and the anchoring mechanism of LCAT activation.
J Lipid Res. 2021;62:100006. doi: 10.1194/jlr.RA120000843. Epub 2020 Dec 10.
9
Cholesterol Acceptors Regulate the Lipidome of Macrophage Foam Cells.
Int J Mol Sci. 2019 Aug 2;20(15):3784. doi: 10.3390/ijms20153784.
10
Apolipoprotein A-I directly interacts with extracellular domain 1 of human ABCA1.
Biosci Biotechnol Biochem. 2019 Mar;83(3):490-497. doi: 10.1080/09168451.2018.1547106. Epub 2018 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验