Suppr超能文献

利用导电材料增强生物电化学系统中三氯乙烯的还原脱氯。

Enhancing reductive dechlorination of trichloroethylene in bioelectrochemical systems with conductive materials.

机构信息

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.

出版信息

Environ Res. 2024 Nov 15;261:119773. doi: 10.1016/j.envres.2024.119773. Epub 2024 Aug 12.

Abstract

The incorporation of conductive materials to enhance electron transfer in bioelectrochemical systems (BES) is considered a promising approach. However, the specific effects and mechanisms of these materials on trichloroethylene (TCE) reductive dechlorination in BES remains are not fully understood. This study investigated the use of magnetite nanoparticles (MNP) and biochars (BC) as coatings on biocathodes for TCE reduction. Results demonstrated that the average dechlorination rates of MNP-Biocathode (122.89 μM Cl·d) and BC-Biocathode (102.88 μM Cl·d) were greatly higher than that of Biocathode (78.17 μM Cl·d). Based on MATLAB calculation, the dechlorination rate exhibited a more significantly increase in TCE-to-DCE step than the other dechlorination steps. Microbial community analyses revealed an increase in the relative abundance of electroactive and dechlorinating populations (e.g., Pseudomonas, Geobacter, and Desulfovibrio) in MNP-Biocathode and BC-Biocathode. Functional gene analysis via RT-qPCR showed the expression of dehalogenase (RDase) and direct electron transfer (DET) related genes was upregulated with the addition of MNP and BC. These findings suggest that conductive materials might accelerate reductive dechlorination by enhancing DET. The difference of physicochemical characteristics (e.g. particle size and specific surface area), electron transfer enhancement mechanism between MNP and BC as well as the reduction of Fe(III) by hydrogen may explain the superior dechlorination rate observed with MNP-Biocathode.

摘要

将导电材料纳入生物电化学系统 (BES) 以增强电子转移被认为是一种很有前途的方法。然而,这些材料对 BES 中三氯乙烯 (TCE) 还原脱氯的具体影响和机制尚不完全清楚。本研究探讨了在生物阴极上使用磁铁矿纳米颗粒 (MNP) 和生物炭 (BC) 作为涂层来还原 TCE。结果表明,MNP-生物阴极 (122.89 μM Cl·d) 和 BC-生物阴极 (102.88 μM Cl·d) 的平均脱氯率明显高于生物阴极 (78.17 μM Cl·d)。基于 MATLAB 计算,脱氯率在 TCE 到 DCE 步骤的增加幅度大于其他脱氯步骤。微生物群落分析显示,MNP-生物阴极和 BC-生物阴极中电活性和脱氯种群 (如假单胞菌、地杆菌和脱硫弧菌) 的相对丰度增加。通过 RT-qPCR 进行的功能基因分析表明,添加 MNP 和 BC 后,脱卤酶 (RDase) 和直接电子转移 (DET) 相关基因的表达上调。这些发现表明,导电材料可能通过增强 DET 来加速还原脱氯。MNP 和 BC 的物理化学特性 (如粒径和比表面积) 以及电子转移增强机制的差异,以及氢气还原 Fe(III) 可能解释了 MNP-生物阴极观察到的优越脱氯率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验