Moscatelli Marco, Comi Claudia, Marigo Jean-Jacques
Department of Civil and Environmental Engineering, Politecnico di Milano , Milan, Italy.
Laboratoire de Mécanique des Solides, École Polytechnique , Palaiseau, France.
Philos Trans A Math Phys Eng Sci. 2024 Sep 23;382(2279):20230351. doi: 10.1098/rsta.2023.0351. Epub 2024 Aug 12.
Structural lattices with quasi-periodic patterns possess interesting dynamic features that can be exploited to control, localize and redirect propagating waves. In this work, we show that the properties of a large class of quasi-periodic locally resonant systems (approximated as periodic, with arbitrarily large period) can be performed by defining an equivalent discrete system. Several properties of wave propagation can be demonstrated with reference to this system. Results in terms of bulk spectrum, showing the Hofstadter butterfly pattern, and of topological modes are then discussed in detail with reference to a simple example of quasi-periodic lattice. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.
具有准周期图案的结构晶格具有有趣的动态特性,可用于控制、定位和重定向传播波。在这项工作中,我们表明,通过定义一个等效离散系统,可以描述一大类准周期局部共振系统(近似为具有任意大周期的周期系统)的特性。参考该系统可以证明波传播的几个特性。然后,参考一个准周期晶格的简单示例,详细讨论了体谱(显示霍夫施塔特蝴蝶图案)和拓扑模式方面的结果。本文是主题为“弹性和声学超材料科学的当前发展(第2部分)”的一部分。