Chandran Athul C S, Schneider Johannes, Nair Reshma, Bill Buchanan, Gadegaard Nikolaj, Hogg Richard, Kumar Shanmugam, Manjakkal Libu
School of Computing and Engineering & the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, U.K.
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
ACS Omega. 2024 Jul 23;9(31):33998-34007. doi: 10.1021/acsomega.4c04576. eCollection 2024 Aug 6.
In this study, we examine the electrochemical performance of supercapacitor (SC) electrodes made from 3D-printed nanocomposites. These composites consist of multiwalled carbon nanotubes (MWCNTs) and polyether ether ketone (PEEK), coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The electrochemical performance of a 3D-printed PEEK/MWCNT solid electrode with a surface area density of 1.2 mm is compared to two distinct periodically porous PEEK/MWCNT electrodes with surface area densities of 7.3 and 7.1 mm. To enhance SC performance, the 3D-printed electrodes are coated with a conductive polymer, PEDOT:PSS. The architected cellular electrodes exhibit significantly improved capacitive properties, with the cellular electrode (7.1 mm) displaying a capacitance nearly four times greater than that of the solid 3D-printed electrode-based SCs. Moreover, the PEDOT:PSS-coated cellular electrode (7.1 mm) demonstrates a high specific capacitance of 12.55 mF·cm at 50 mV·s, contrasting to SCs based on 3D-printed cellular electrodes (4.09 mF·cm at 50 mV·s) without the coating. The conductive PEDOT:PSS coating proves effective in reducing surface resistance, resulting in a decreased voltage drop during the SCs' charging and discharging processes. Ultimately, the 3D-printed cellular nanocomposite electrode with the conductive polymer coating achieves an energy density of 1.98 μW h·cm at a current of 70 μA. This study underscores how the combined effect of the surface area density of porous electrodes enabled by 3D printing, along with the conductivity imparted by the polymer coating, synergistically improves the energy storage performance.
在本研究中,我们考察了由3D打印纳米复合材料制成的超级电容器(SC)电极的电化学性能。这些复合材料由多壁碳纳米管(MWCNT)和聚醚醚酮(PEEK)组成,并涂覆有聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。将表面积密度为1.2平方毫米的3D打印PEEK/MWCNT固体电极的电化学性能与表面积密度分别为7.3和7.1平方毫米的两种不同的周期性多孔PEEK/MWCNT电极进行比较。为了提高超级电容器的性能,对3D打印电极涂覆了导电聚合物PEDOT:PSS。构建的蜂窝状电极表现出显著改善的电容特性,其中蜂窝状电极(7.1平方毫米)的电容比基于3D打印固体电极的超级电容器的电容大近四倍。此外,涂覆有PEDOT:PSS的蜂窝状电极(7.1平方毫米)在50毫伏/秒时表现出12.55毫法/平方厘米的高比电容,相比之下,未涂覆的基于3D打印蜂窝状电极的超级电容器(在50毫伏/秒时为4.09毫法/平方厘米)。导电的PEDOT:PSS涂层被证明可有效降低表面电阻,从而在超级电容器的充电和放电过程中减少电压降。最终,具有导电聚合物涂层的3D打印蜂窝状纳米复合电极在70微安的电流下实现了1.98微瓦时/平方厘米的能量密度。本研究强调了3D打印实现的多孔电极表面积密度与聚合物涂层赋予的导电性的综合作用如何协同提高能量存储性能。