Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
Small. 2023 Jun;19(23):e2207634. doi: 10.1002/smll.202207634. Epub 2023 Feb 2.
Recently, stretchable micro-supercapacitors (MSCs) that can be easily integrated into electronic devices have attracted research and industrial attentions. In this work, three-dimensional (3D) stretchable MSCs with an octet-truss electrode (OTE) design have been demonstrated by a rapid digital light processing (DLP) process. The 3D-printed electrode structure is beneficial for electrode-electrolyte interface formation and consequently increases the number of ions adsorbed on the electrode surface. The designed MSCs can achieve a high capacitance as ≈74.76 mF cm under 1 mA cm at room temperature even under a high mechanical deformation, and can achieve 19.53 mF cm under 0.1 mA cm at a low temperature (-30 °C). Moreover, finite element analysis (FEA) reveals the OTE structure provides 8 times more contact area per unit volume at the electrode-electrolyte interface compared to the traditional interdigital electrode (IDE). This work combines structural design and 3D printing techniques, which provides new insights into highly stretchable MSCs for next-generation electronic devices.
最近,可轻松集成到电子设备中的拉伸微超级电容器 (MSC) 引起了研究和工业界的关注。在这项工作中,通过快速数字光处理 (DLP) 工艺展示了具有八面体桁架电极 (OTE) 设计的三维 (3D) 可拉伸 MSC。3D 打印的电极结构有利于电极-电解质界面的形成,从而增加了吸附在电极表面的离子数量。设计的 MSC 即使在高机械变形下,也可以在室温下以 1 mA cm 的电流密度下实现 ≈74.76 mF cm 的高电容,并且可以在低温(-30°C)下以 0.1 mA cm 的电流密度下实现 19.53 mF cm 的电容。此外,有限元分析 (FEA) 表明,与传统的叉指电极 (IDE) 相比,OTE 结构在电极-电解质界面处每单位体积提供了 8 倍的更多接触面积。这项工作结合了结构设计和 3D 打印技术,为下一代电子设备的高可拉伸 MSC 提供了新的见解。