Suppr超能文献

用于电子顺磁共振光谱的263吉赫兹行波管的演示。

Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.

作者信息

Pan Pan, Zheng Yuan, Li Ying, Song Xubo, Feng Zhihong, Feng Jinjun, Britt R David, Luhmann N C

机构信息

National Key Laboratory of Science and Technology on Vacuum Electronics (NKLST-VE), Beijing Vacuum Electronics Research Institute (BVERI), Beijing 100015, China.

National Key Laboratory of Science and Technology on Vacuum Electronics (NKLST-VE), University of Electronic Science and Technology of China (UESTC), Chengdu, China.

出版信息

IEEE Trans Electron Devices. 2023 Nov;70(11):5897-5902. doi: 10.1109/ted.2023.3312230. Epub 2023 Sep 20.

Abstract

In this letter, a 263 GHz traveling wave tube for electron paramagnetic resonance spectroscopy is designed, fabricated and tested. A periodic permanent magnet focused pencil beam electron optical system is adopted. A folded waveguide slow-wave structure with modified serpentine bends is optimized to provide high-power wideband performance and stable operation. An experiment has been performed to verify the analysis results and confirm the amplifier stability. The device provides a maximum 11.9 W saturation output power and 25.5 dB saturation gain. Although the available solid-state signal source is unable to drive the amplifier to saturation beyond 260 - 264 GHz, 10 W output power over 5.6 GHz bandwidth has been measured.

摘要

在这封信中,设计、制造并测试了一种用于电子顺磁共振光谱的263GHz行波管。采用了周期性永磁聚焦笔形束电子光学系统。对带有改进型蛇形弯曲的折叠波导慢波结构进行了优化,以提供高功率宽带性能和稳定运行。进行了一项实验以验证分析结果并确认放大器的稳定性。该器件提供最大11.9W的饱和输出功率和25.5dB的饱和增益。尽管现有的固态信号源无法将放大器驱动到260 - 264GHz以上的饱和状态,但已测得在5.6GHz带宽上的输出功率为10W。

相似文献

1
Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.
IEEE Trans Electron Devices. 2023 Nov;70(11):5897-5902. doi: 10.1109/ted.2023.3312230. Epub 2023 Sep 20.
2
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
IEEE Trans Electron Devices. 2009 May 1;56(5):818-827. doi: 10.1109/TED.2009.2015802.
3
A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
Micromachines (Basel). 2022 Sep 29;13(10):1635. doi: 10.3390/mi13101635.
5
Photonic-band-gap traveling-wave gyrotron amplifier.
Phys Rev Lett. 2013 Dec 6;111(23):235101. doi: 10.1103/PhysRevLett.111.235101.
7
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
8
High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):258302. doi: 10.1103/PhysRevLett.90.258302. Epub 2003 Jun 26.
9
High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide.
Phys Rev Lett. 2000 Mar 20;84(12):2746-9. doi: 10.1103/PhysRevLett.84.2746.

引用本文的文献

2
High-frequency high-power DNP/EPR spectrometer operating at 7 T magnetic field.
J Magn Reson. 2024 May;362:107677. doi: 10.1016/j.jmr.2024.107677. Epub 2024 Apr 10.

本文引用的文献

1
A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
Micromachines (Basel). 2022 Sep 29;13(10):1635. doi: 10.3390/mi13101635.
2
THz Dynamic Nuclear Polarization NMR.
IEEE Trans Terahertz Sci Technol. 2011 Aug 29;1(1):145-163. doi: 10.1109/TTHZ.2011.2159546.
3
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5850-60. doi: 10.1039/c003685b. Epub 2010 May 7.
4
Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source.
J Magn Reson. 2003 Feb;160(2):85-90. doi: 10.1016/s1090-7807(02)00192-1.
5
Terahertz power.
Nature. 2002 Nov 14;420(6912):131-3. doi: 10.1038/420131a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验