Suppr超能文献

光子带隙行波回旋管放大器。

Photonic-band-gap traveling-wave gyrotron amplifier.

机构信息

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Department of Chemistry and the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev Lett. 2013 Dec 6;111(23):235101. doi: 10.1103/PhysRevLett.111.235101.

Abstract

We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.

摘要

我们报告了在 250GHz 下使用光子带隙(PBG)互作用电路的回旋行波管放大器的实验演示。该回旋管放大器在 247.7GHz 时实现了 38dB 的峰值小信号增益和 45W 的输出功率,瞬时-3dB 带宽为 0.4GHz。该放大器可在 245-256GHz 范围内调谐工作。在 253.25GHz 处观察到 4.5GHz 的最宽瞬时-3dB 带宽,增益为 24dB。PBG 电路通过支持横向电场(TE)模式在窄频带内的传播来提供稳定性,允许限制工作 TE03 类似模式的传播,同时抑制附近频率的振荡激励。该实验实现了回旋管放大器的最高工作频率;目前,在该频率范围内,没有其他放大器能够同时产生高增益或高输出功率。这一结果代表了基于常规电压真空电子器件的放大器在 94GHz 以上观察到的最高增益和在 140GHz 以上实现的最高输出功率。

相似文献

1
Photonic-band-gap traveling-wave gyrotron amplifier.光子带隙行波回旋管放大器。
Phys Rev Lett. 2013 Dec 6;111(23):235101. doi: 10.1103/PhysRevLett.111.235101.
2
Photonic-band-gap gyrotron amplifier with picosecond pulses.具有皮秒脉冲的光子带隙回旋管放大器。
Appl Phys Lett. 2017 Dec 4;111(23):233504. doi: 10.1063/1.5006348. Epub 2017 Dec 5.
3
High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.高功率140吉赫兹准光学回旋行波放大器。
Phys Rev Lett. 2003 Jun 27;90(25 Pt 1):258302. doi: 10.1103/PhysRevLett.90.258302. Epub 2003 Jun 26.
4
Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.在 140GHz 回旋行波管中对皮秒脉冲进行放大。
Phys Rev Lett. 2010 Sep 24;105(13):135101. doi: 10.1103/PhysRevLett.105.135101. Epub 2010 Sep 20.
5
Photonic-band-gap resonator gyrotron.光子带隙谐振腔回旋管
Phys Rev Lett. 2001 Jun 11;86(24):5628-31. doi: 10.1103/PhysRevLett.86.5628.
9
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.使用介质加载、无隔板共焦波导的140GHz回旋行波管放大器的运行
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
10
A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
Micromachines (Basel). 2022 Sep 29;13(10):1635. doi: 10.3390/mi13101635.

引用本文的文献

1
Dipolar Recoupling in Rotating Solids.旋转固体中的偶极重耦合
Chem Rev. 2024 Nov 27;124(22):12844-12917. doi: 10.1021/acs.chemrev.4c00373. Epub 2024 Nov 6.
4
Integrated, Stretched, and Adiabatic Solid Effects.集成、拉伸和绝热固体效应。
J Phys Chem Lett. 2022 Jun 30;13(25):5751-5757. doi: 10.1021/acs.jpclett.2c01147. Epub 2022 Jun 17.
5
Time domain DNP at 1.2 T.1.2T 下的时域 DNP。
J Magn Reson. 2021 Aug;329:107012. doi: 10.1016/j.jmr.2021.107012. Epub 2021 Jun 7.
6
Phase Measurements of a 140-GHz Confocal Gyro-Amplifier.140吉赫兹共焦回旋放大器的相位测量
J Infrared Millim Terahertz Waves. 2021 Jan;42(1):29-39. doi: 10.1007/s10762-020-00751-w. Epub 2020 Oct 27.
7
Adiabatic Solid Effect.绝热固体效应
J Phys Chem Lett. 2020 May 7;11(9):3416-3421. doi: 10.1021/acs.jpclett.0c00654. Epub 2020 Apr 20.
8
9
Time-optimized pulsed dynamic nuclear polarization.时间优化脉冲动态核极化
Sci Adv. 2019 Jan 18;5(1):eaav6909. doi: 10.1126/sciadv.aav6909. eCollection 2019 Jan.
10
Photonic-band-gap gyrotron amplifier with picosecond pulses.具有皮秒脉冲的光子带隙回旋管放大器。
Appl Phys Lett. 2017 Dec 4;111(23):233504. doi: 10.1063/1.5006348. Epub 2017 Dec 5.

本文引用的文献

1
THz Dynamic Nuclear Polarization NMR.太赫兹动态核极化核磁共振。
IEEE Trans Terahertz Sci Technol. 2011 Aug 29;1(1):145-163. doi: 10.1109/TTHZ.2011.2159546.
3
Low-Loss Transmission Lines for High-Power Terahertz Radiation.用于高功率太赫兹辐射的低损耗传输线。
J Infrared Millim Terahertz Waves. 2012 Jul 1;33(7):695-714. doi: 10.1007/s10762-012-9870-5. Epub 2012 Feb 1.
6
Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.在 140GHz 回旋行波管中对皮秒脉冲进行放大。
Phys Rev Lett. 2010 Sep 24;105(13):135101. doi: 10.1103/PhysRevLett.105.135101. Epub 2010 Sep 20.
7
Development of a novel high power sub-THz second harmonic gyrotron.新型高功率亚太赫兹二次谐波回旋管的研制。
Phys Rev Lett. 2009 Nov 27;103(22):225002. doi: 10.1103/PhysRevLett.103.225002. Epub 2009 Nov 23.
9
Large-orbit gyrotron operation in the terahertz frequency range.太赫兹频率范围内的大轨道回旋管运行
Phys Rev Lett. 2009 Jun 19;102(24):245101. doi: 10.1103/PhysRevLett.102.245101. Epub 2009 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验