Roberts Cameron G, Fishman Chloe B, Banh Dalton V, Marraffini Luciano A
Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
bioRxiv. 2024 Jul 29:2024.07.29.605636. doi: 10.1101/2024.07.29.605636.
Toll/interleukin-1 receptor (TIR) domains are present in immune systems that protect prokaryotes from viral (phage) attack. In response to infection, TIRs can produce a cyclic adenosine diphosphate-ribose (ADPR) signaling molecule, which activates an effector that depletes the host of the essential metabolite NAD+ to limit phage propagation. How bacterial TIRs recognize phage infection is not known. Here we describe the sensing mechanism for the staphylococcal Thoeris defense system, which consists of two TIR domain sensors, ThsB1 and ThsB2, and the effector ThsA. We show that the major capsid protein of phage Φ80α forms a complex with ThsB1 and ThsB2, which is sufficient for the synthesis of 1"-3' glycocyclic ADPR (gcADPR) and subsequent activation of NAD+ cleavage by ThsA. Consistent with this, phages that escape Thoeris immunity harbor mutations in the capsid that prevent complex formation. We show that capsid proteins from staphylococcal Siphoviridae belonging to the capsid serogroup B, but not A, are recognized by ThsB1/B2, a result that suggests that capsid recognition by Sau-Thoeris and other anti-phage defense systems may be an important evolutionary force behind the structural diversity of prokaryotic viruses. More broadly, since mammalian toll-like receptors harboring TIR domains can also recognize viral structural components to produce an inflammatory response against infection, our findings reveal a conserved mechanism for the activation of innate antiviral defense pathways.
Toll/白细胞介素-1受体(TIR)结构域存在于保护原核生物免受病毒(噬菌体)攻击的免疫系统中。在受到感染时,TIR能够产生一种环状腺苷二磷酸核糖(ADPR)信号分子,该分子激活一种效应蛋白,使宿主消耗必需代谢物烟酰胺腺嘌呤二核苷酸(NAD⁺)以限制噬菌体繁殖。细菌TIR如何识别噬菌体感染尚不清楚。在此,我们描述了葡萄球菌Thoeris防御系统的传感机制,该系统由两个TIR结构域传感器ThsB1和ThsB2以及效应蛋白ThsA组成。我们发现噬菌体Φ80α的主要衣壳蛋白与ThsB1和ThsB2形成复合物,这足以合成1''-3'糖环化ADPR(gcADPR)并随后激活ThsA对NAD⁺的切割。与此一致的是,逃避Thoeris免疫的噬菌体在衣壳中发生突变,从而阻止复合物形成。我们发现来自属于衣壳血清群B而非A的葡萄球菌长尾噬菌体科的衣壳蛋白可被ThsB1/B2识别,这一结果表明Sau-Thoeris和其他抗噬菌体防御系统对衣壳的识别可能是原核病毒结构多样性背后的一种重要进化驱动力。更广泛地说,由于含有TIR结构域的哺乳动物Toll样受体也能识别病毒结构成分以产生针对感染的炎症反应,我们的研究结果揭示了激活先天性抗病毒防御途径的一种保守机制。