Suppr超能文献

采用人工神经网络和F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描的乳腺癌亚型预测模型

Breast Cancer Subtype Prediction Model Employing Artificial Neural Network and F-Fluorodeoxyglucose Positron Emission Tomography/ Computed Tomography.

作者信息

Hossain Alamgir, Chowdhury Shariful Islam

机构信息

Department of Physics, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh.

Institute of Nuclear Medicine and Allied Sciences, Bangladesh Atomic Energy Commission, Rajshahi, Bangladesh.

出版信息

J Med Phys. 2024 Apr-Jun;49(2):181-188. doi: 10.4103/jmp.jmp_181_23. Epub 2024 Jun 25.

Abstract

INTRODUCTION

Although positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate the clinical subtypes of BC based on the value of the tumor marker.

MATERIALS AND METHODS

In our nuclear medical facility, 122 BC patients (training and testing) had F-fluoro-D-glucose (F-FDG) PET/CT to identify the various subtypes of the disease. F-FDG-18 injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor marker value, the ANN's output layer uses the Softmax function with cross-entropy loss to detect different subtypes of BC.

RESULTS

With an accuracy of 95.77%, the result illustrates the ANN model for K-fold cross-validation. The mean values of specificity and sensitivity were 0.955 and 0.958, respectively. The area under the curve on average was 0.985.

CONCLUSION

Subtypes of BC may be categorized using the suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested model is clinically implemented.

摘要

引言

尽管正电子发射断层扫描/计算机断层扫描(PET/CT)是测量乳腺癌(BC)的常用工具,但它不会自动对亚型进行分类。因此,本研究的目的是使用人工神经网络(ANN)基于肿瘤标志物的值来评估BC的临床亚型。

材料与方法

在我们的核医学设施中,122例BC患者(训练和测试)接受了F-氟代-D-葡萄糖(F-FDG)PET/CT检查,以确定该疾病的各种亚型。在扫描过程前给患者注射F-FDG-18。我们按照方案进行扫描。基于肿瘤标志物值,ANN的输出层使用带有交叉熵损失的Softmax函数来检测BC的不同亚型。

结果

结果表明K折交叉验证的ANN模型准确率为95.77%。特异性和敏感性的平均值分别为0.955和0.958。平均曲线下面积为0.985。

结论

BC的亚型可以使用所建议的方法进行分类。当所建议的模型在临床上实施时,PET/CT可以更新为使用适当的肿瘤标志物值来诊断BC亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7139/11309150/15d83c4bb4f5/JMP-49-181-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验