Taralli Silvia, Scolozzi Valentina, Boldrini Luca, Lenkowicz Jacopo, Pelliccioni Armando, Lorusso Margherita, Attieh Ola, Ricciardi Sara, Carleo Francesco, Cardillo Giuseppe, Calcagni Maria Lucia
Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
Unità Operativa Complessa (UOC) di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
Front Med (Lausanne). 2021 Apr 22;8:664529. doi: 10.3389/fmed.2021.664529. eCollection 2021.
To evaluate the performance of artificial neural networks (aNN) applied to preoperative F-FDG PET/CT for predicting nodal involvement in non-small-cell lung cancer (NSCLC) patients. We retrospectively analyzed data from 540 clinically resectable NSCLC patients (333 M; 67.4 ± 9 years) undergone preoperative F-FDG PET/CT and pulmonary resection with hilo-mediastinal lymphadenectomy. A 3-layers NN model was applied (dataset randomly splitted into 2/3 training and 1/3 testing). Using histopathological reference standard, NN performance for nodal involvement (N0/N+ patient) was calculated by ROC analysis in terms of: area under the curve (AUC), accuracy (ACC), sensitivity (SE), specificity (SP), positive and negative predictive values (PPV, NPV). Diagnostic performance of PET visual analysis (N+ patient: at least one node with uptake ≥ mediastinal blood-pool) and of logistic regression (LR) was evaluated. Histology proved 108/540 (20%) nodal-metastatic patients. Among all collected data, relevant features selected as input parameters were: patients' age, tumor parameters (size, PET visual and semiquantitative features, histotype, grading), PET visual nodal result (patient-based, as N0/N+ and N0/N1/N2). Training and testing NN performance (AUC = 0.849, 0.769): ACC = 80 and 77%; SE = 72 and 58%; SP = 81 and 81%; PPV = 50 and 44%; NPV = 92 and 89%, respectively. Visual PET performance: ACC = 82%, SE = 32%, SP = 94%; PPV = 57%, NPV = 85%. Training and testing LR performance (AUC = 0.795, 0.763): ACC = 75 and 77%; SE = 68 and 55%; SP = 77 and 82%; PPV = 43 and 43%; NPV = 90 and 88%, respectively. aNN application to preoperative F-FDG PET/CT provides overall good performance for predicting nodal involvement in NSCLC patients candidate to surgery, especially for ruling out nodal metastases, being NPV the best diagnostic result; a high NPV was also reached by PET qualitative assessment. Moreover, in such population with low nodal involvement probability, aNN better identify the relatively few and unexpected nodal-metastatic patients than PET analysis, so supporting the additional aNN use in case of PET-negative images.
为评估应用于术前F-FDG PET/CT的人工神经网络(aNN)预测非小细胞肺癌(NSCLC)患者淋巴结受累情况的性能。我们回顾性分析了540例临床可切除的NSCLC患者(333例男性;67.4±9岁)的数据,这些患者均接受了术前F-FDG PET/CT检查及肺切除加纵隔淋巴结清扫术。应用了一个三层神经网络模型(数据集随机分为2/3训练集和1/3测试集)。以组织病理学参考标准为依据,通过ROC分析计算神经网络在淋巴结受累情况(N0/N+患者)方面的性能,包括曲线下面积(AUC)、准确性(ACC)、敏感性(SE)、特异性(SP)、阳性和阴性预测值(PPV、NPV)。评估了PET视觉分析(N+患者:至少一个淋巴结摄取≥纵隔血池)和逻辑回归(LR)的诊断性能。组织学检查证实108/540(20%)例患者有淋巴结转移。在所有收集的数据中,选为输入参数的相关特征有:患者年龄、肿瘤参数(大小、PET视觉和半定量特征、组织学类型、分级)、PET视觉淋巴结结果(基于患者,分为N0/N+和N0/N1/N2)。神经网络训练和测试性能(AUC分别为0.849、0.769):ACC分别为80%和77%;SE分别为72%和58%;SP分别为81%和81%;PPV分别为50%和44%;NPV分别为92%和89%。PET视觉分析性能:ACC为82%,SE为32%,SP为94%;PPV为57%,NPV为85%。逻辑回归训练和测试性能(AUC分别为0.795、0.763):ACC分别为75%和77%;SE分别为68%和55%;SP分别为77%和82%;PPV分别为43%和43%;NPV分别为90%和88%。将aNN应用于术前F-FDG PET/CT在预测拟行手术的NSCLC患者淋巴结受累情况方面总体表现良好,尤其是在排除淋巴结转移方面,NPV是最佳诊断结果;PET定性评估也获得了较高的NPV。此外,在这种淋巴结受累概率较低的人群中,与PET分析相比,aNN能更好地识别相对较少且意外的淋巴结转移患者,因此支持在PET图像为阴性的情况下额外使用aNN。