文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程无机纳米酶结构用于活性氧的分解。

Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species.

机构信息

MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.

出版信息

Dalton Trans. 2024 Aug 27;53(34):14132-14138. doi: 10.1039/d4dt01874e.


DOI:10.1039/d4dt01874e
PMID:39133078
Abstract

Enzyme-mimicking nanomaterials (nanozymes) with antioxidant activity are at the forefront of research efforts towards biomedical and industrial applications. The selection of enzymatically active substances and their incorporation into novel inorganic nanozyme structures is critically important for this field of research. To this end, the fabrication of composites can be desirable as these can either exhibit multiple enzyme-like activities in a single material or show increased activity compared to the nanozyme components. Conversely, by modifying the structure of a nanomaterial, enzyme-like activities can be induced in formerly inert particles. We identify herein the three main routes of composite nanozyme synthesis, namely, surface functionalization of a particle with another compound, heteroaggregation of individual nanozymes, and modification of the bulk nanozyme structure to achieve optimal antioxidant activity. We discuss in particular the different inorganic support materials used in the synthesis of nanozyme architectures and the advantages brought forth by the use of composites.

摘要

具有抗氧化活性的模拟酶纳米材料(纳米酶)是医学和工业应用研究的前沿领域。选择具有酶活性的物质并将其纳入新型无机纳米酶结构对于该研究领域至关重要。为此,复合材料的制备可能是可取的,因为这些复合材料在一种材料中可以表现出多种类似酶的活性,或者与纳米酶成分相比表现出更高的活性。相反,通过修饰纳米材料的结构,可以在以前惰性的颗粒中诱导出类似酶的活性。我们在此确定了复合纳米酶合成的三种主要途径,即:用另一种化合物对颗粒进行表面功能化、单个纳米酶的杂化聚集以及修饰纳米酶的整体结构以达到最佳抗氧化活性。我们特别讨论了用于合成纳米酶结构的不同无机载体材料以及使用复合材料带来的优势。

相似文献

[1]
Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species.

Dalton Trans. 2024-8-27

[2]
The biomedical applications of nanozymes in orthopaedics based on regulating reactive oxygen species.

J Nanobiotechnology. 2024-9-16

[3]
Recent Advances in Nanozyme Research.

Adv Mater. 2018-12-27

[4]
Exploring Nanozymes for Organic Substrates: Building Nano-organelles.

Angew Chem Int Ed Engl. 2024-9-23

[5]
Using Wool Keratin Derived Metallo-Nanozymes as a Robust Antioxidant Catalyst to Scavenge Reactive Oxygen Species Generated by Smoking.

Small. 2022-6

[6]
Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications.

Adv Healthc Mater. 2025-3

[7]
Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives.

Adv Colloid Interface Sci. 2025-4

[8]
Coamplified Nanozyme Cocktails for Cascade Reaction-Driven Antioxidant Treatments.

ACS Appl Mater Interfaces. 2024-10-9

[9]
Antioxidant activities of metal single-atom nanozymes in biomedicine.

Biomater Sci. 2024-10-8

[10]
Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes.

Nanoscale. 2019-7-9

引用本文的文献

[1]
Correlations Between Colloidal Stability and Peroxidase Activity of Prussian Blue Nanozymes in Salt Solutions.

J Phys Chem B. 2025-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索