MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
Dalton Trans. 2024 Aug 27;53(34):14132-14138. doi: 10.1039/d4dt01874e.
Enzyme-mimicking nanomaterials (nanozymes) with antioxidant activity are at the forefront of research efforts towards biomedical and industrial applications. The selection of enzymatically active substances and their incorporation into novel inorganic nanozyme structures is critically important for this field of research. To this end, the fabrication of composites can be desirable as these can either exhibit multiple enzyme-like activities in a single material or show increased activity compared to the nanozyme components. Conversely, by modifying the structure of a nanomaterial, enzyme-like activities can be induced in formerly inert particles. We identify herein the three main routes of composite nanozyme synthesis, namely, surface functionalization of a particle with another compound, heteroaggregation of individual nanozymes, and modification of the bulk nanozyme structure to achieve optimal antioxidant activity. We discuss in particular the different inorganic support materials used in the synthesis of nanozyme architectures and the advantages brought forth by the use of composites.
具有抗氧化活性的模拟酶纳米材料(纳米酶)是医学和工业应用研究的前沿领域。选择具有酶活性的物质并将其纳入新型无机纳米酶结构对于该研究领域至关重要。为此,复合材料的制备可能是可取的,因为这些复合材料在一种材料中可以表现出多种类似酶的活性,或者与纳米酶成分相比表现出更高的活性。相反,通过修饰纳米材料的结构,可以在以前惰性的颗粒中诱导出类似酶的活性。我们在此确定了复合纳米酶合成的三种主要途径,即:用另一种化合物对颗粒进行表面功能化、单个纳米酶的杂化聚集以及修饰纳米酶的整体结构以达到最佳抗氧化活性。我们特别讨论了用于合成纳米酶结构的不同无机载体材料以及使用复合材料带来的优势。
Dalton Trans. 2024-8-27
J Nanobiotechnology. 2024-9-16
Adv Mater. 2018-12-27
Angew Chem Int Ed Engl. 2024-9-23
Adv Healthc Mater. 2025-3
Adv Colloid Interface Sci. 2025-4
ACS Appl Mater Interfaces. 2024-10-9
Biomater Sci. 2024-10-8