IEEE Trans Nanobioscience. 2024 Oct;23(4):556-563. doi: 10.1109/TNB.2024.3441689. Epub 2024 Oct 15.
Pancreatic cancer is one of the most malignant cancers with rapid progression and poor prognosis. The use of transcriptional data can be effective in finding new biomarkers for pancreatic cancer. Many network-based methods used to identify cancer biomarkers are proposed, among which the combination of network controllability appears. However, most of the existing methods do not study RNA, rely on priori and mutations information, or can only achieve classification tasks. In this study, we propose a method combined Relational Graph Convolutional Network and Deep Q-Network called RDDriver to identify pancreatic cancer biomarkers based on multi-layer heterogeneous transcriptional regulation network. Firstly, we construct a regulation network containing long non-coding RNA, microRNA, and messenger RNA. Secondly, Relational Graph Convolutional Network is used to learn the node representation. Finally, we use the idea of Deep Q-Network to build a model, which score and prioritize each RNA with the Popov-Belevitch-Hautus criterion. We train RDDriver on three small simulated networks, and calculate the average score after applying the model parameters to the regulation networks separately. To demonstrate the effectiveness of the method, we perform experiments for comparison between RDDriver and other eight methods based on the approximate benchmark of three types cancer drivers RNAs.
胰腺癌是进展迅速、预后不良的最恶性癌症之一。转录数据的使用可以有效地发现胰腺癌的新生物标志物。已经提出了许多用于识别癌症生物标志物的基于网络的方法,其中包括网络可控性的组合。然而,大多数现有方法没有研究 RNA,依赖于先验和突变信息,或者只能实现分类任务。在这项研究中,我们提出了一种基于多层次异质转录调控网络的方法,称为 RDDriver,用于识别胰腺癌生物标志物。首先,我们构建了一个包含长非编码 RNA、microRNA 和信使 RNA 的调控网络。其次,使用关系图卷积网络来学习节点表示。最后,我们使用 Deep Q-Network 的思想构建一个模型,该模型使用 Popov-Belevitch-Hautus 准则对每个 RNA 进行评分和优先级排序。我们在三个小型模拟网络上训练 RDDriver,并分别将模型参数应用于调控网络后计算平均得分。为了证明该方法的有效性,我们基于三种类型的癌症驱动 RNA 的近似基准,针对 RDDriver 和其他八种方法进行了实验比较。