Ni Jie, Yan Donghui, Lu Shan, Xie Zhuoying, Liu Yun, Zhang Xin
IEEE J Biomed Health Inform. 2025 Jan;29(1):679-689. doi: 10.1109/JBHI.2024.3476672. Epub 2025 Jan 7.
Cancer classification and biomarker identification are crucial for guiding personalized treatment. To make effective use of miRNA associations and expression data, we have developed a deep learning model for cancer classification and biomarker identification. We propose an approach for cancer classification called MiRNA Selection and Hybrid Fusion (MiRS-HF), which consists of early fusion and intermediate fusion. The early fusion involves applying a Layer Attention Graph Convolutional Network (LAGCN) to a miRNA-disease heterogeneous network, resulting in a miRNA-disease association degree score matrix. The intermediate fusion employs a Graph Convolutional Network (GCN) in the classification tasks, weighting the expression data based on the miRNA-disease association degree score. Furthermore, MiRS-HF can identify the important miRNA biomarkers and their expression patterns. The proposed method demonstrates superior performance in the classification tasks of six cancers compared to other methods. Simultaneously, we incorporated the feature weighting strategy into the comparison algorithm, leading to a significant improvement in the algorithm's results, highlighting the extreme importance of this strategy.
癌症分类和生物标志物识别对于指导个性化治疗至关重要。为了有效利用miRNA关联和表达数据,我们开发了一种用于癌症分类和生物标志物识别的深度学习模型。我们提出了一种名为MiRNA选择与混合融合(MiRS-HF)的癌症分类方法,该方法由早期融合和中间融合组成。早期融合是将层注意力图卷积网络(LAGCN)应用于miRNA-疾病异质网络,从而得到一个miRNA-疾病关联度得分矩阵。中间融合在分类任务中采用图卷积网络(GCN),根据miRNA-疾病关联度得分对表达数据进行加权。此外,MiRS-HF可以识别重要的miRNA生物标志物及其表达模式。与其他方法相比,所提出的方法在六种癌症的分类任务中表现出卓越的性能。同时,我们将特征加权策略纳入比较算法,使算法结果有了显著改进,突出了该策略的极端重要性。