El-Machachi Zakariya, Frantzov Damyan, Nijamudheen A, Zarrouk Tigany, Caro Miguel A, Deringer Volker L
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom.
Department of Chemistry and Materials Science, Aalto University, 02150, Espoo, Finland.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202410088. doi: 10.1002/anie.202410088. Epub 2024 Nov 13.
Graphene oxide (GO) materials are widely studied, and yet their atomic-scale structures remain to be fully understood. Here we show that the chemical and configurational space of GO can be rapidly explored by advanced machine-learning methods, combining on-the-fly acceleration for first-principles molecular dynamics with message-passing neural-network potentials. The first step allows for the rapid sampling of chemical structures with very little prior knowledge required; the second step affords state-of-the-art accuracy and predictive power. We apply the method to the thermal reduction of GO, which we describe in a realistic (ten-nanometre scale) structural model. Our simulations are consistent with recent experimental findings, including X-ray photoelectron spectroscopy (XPS), and help to rationalise them in atomistic and mechanistic detail. More generally, our work provides a platform for routine, accurate, and predictive simulations of diverse carbonaceous materials.
氧化石墨烯(GO)材料已得到广泛研究,但其原子尺度结构仍有待全面了解。在此,我们表明,结合用于第一性原理分子动力学的即时加速与消息传递神经网络势的先进机器学习方法,能够快速探索氧化石墨烯的化学和构型空间。第一步允许在几乎不需要先验知识的情况下快速采样化学结构;第二步提供了最先进的准确性和预测能力。我们将该方法应用于氧化石墨烯的热还原过程,并在一个现实的(十纳米尺度)结构模型中对其进行描述。我们的模拟结果与包括X射线光电子能谱(XPS)在内的近期实验结果一致,并有助于从原子和机理细节上对其进行合理解释。更广泛地说,我们的工作为各种含碳材料的常规、准确和预测性模拟提供了一个平台。