Suppr超能文献

通过机器学习与实验相结合,揭示非晶氧化镓中与原子结构相关的热输运特性。

Unraveling Thermal Transport Correlated with Atomistic Structures in Amorphous Gallium Oxide via Machine Learning Combined with Experiments.

机构信息

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.

Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Adv Mater. 2023 Jun;35(24):e2210873. doi: 10.1002/adma.202210873. Epub 2023 Apr 27.

Abstract

Thermal transport properties of amorphous materials are crucial for their emerging applications in energy and electronic devices. However, understanding and controlling thermal transport in disordered materials remains an outstanding challenge, owing to the intrinsic limitations of computational techniques and the lack of physically intuitive descriptors for complex atomistic structures. Here, it is shown how combining machine-learning-based models and experimental observations can help to accurately describe realistic structures, thermal transport properties, and structure-property maps for disordered materials, which is illustrated by a practical application on gallium oxide. First, the experimental evidence is reported to demonstrate that machine-learning interatomic potentials, generated in a self-guided fashion with minimum quantum-mechanical computations, enable the accurate modeling of amorphous gallium oxide and its thermal transport properties. The atomistic simulations then reveal the microscopic changes in the short-range and medium-range order with density and elucidate how these changes can reduce localization modes and enhance coherences' contribution to heat transport. Finally, a physics-inspired structural descriptor for disordered phases is proposed, with which the underlying relationship between structures and thermal conductivities is predicted in a linear form. This work may shed light on the future accelerated exploration of thermal transport properties and mechanisms in disordered functional materials.

摘要

非晶态材料的热传输性质对于它们在能源和电子设备中的新兴应用至关重要。然而,由于计算技术的固有局限性以及对复杂原子结构缺乏直观的物理描述符,理解和控制无序材料中的热传输仍然是一个悬而未决的挑战。本文展示了如何结合基于机器学习的模型和实验观察来帮助准确描述无序材料的实际结构、热传输性质和结构-性质图谱,通过在氧化镓上的实际应用来说明这一点。首先,报告了实验证据,证明了通过最小的量子力学计算以自引导方式生成的机器学习原子间势能够准确地模拟非晶氧化镓及其热传输性质。然后,原子模拟揭示了短程和中程有序随密度的微观变化,并阐明了这些变化如何减少局域化模式并增强相干对热传输的贡献。最后,提出了一种用于无序相的物理启发式结构描述符,用其以线性形式预测结构和热导率之间的基础关系。这项工作可能为未来在无序功能材料中加速探索热传输性质和机制提供启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验