Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China.
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
Med Phys. 2024 Nov;51(11):8151-8167. doi: 10.1002/mp.17341. Epub 2024 Aug 12.
Current photon-counting computed tomography (CT) systems utilize semiconductor detectors, such as cadmium telluride (CdTe), cadmium zinc telluride (CZT), and silicon (Si), which convert x-ray photons directly into charge pulses. An alternative approach is indirect detection, which involves Yttrium Orthosilicate (YSO) scintillators coupled with silicon photomultipliers (SiPMs). This presents an attractive and cost-effective option due to its low cost, high detection efficiency, low dark count rate, and high sensor gain.
This study aims to establish a comprehensive quantitative imaging framework for three-energy-bin proof-of-concept photon-counting CT based on YSO/SiPM detectors developed in our group using multi-voltage threshold (MVT) digitizers and assess the feasibility of this spectral CT for material identification.
We developed a proof-of-concept YSO/SiPM-based benchtop spectral CT system and established a pipeline for three-energy-bin photon-counting CT projection-domain processing. The empirical A-table method was employed for basis material decomposition, and the quantitative imaging performance of the spectral CT system was assessed. This evaluation included the synthesis errors of virtual monoenergetic images, electron density images, effective atomic number images, and linear attenuation coefficient curves. The validity of employing A-table methods for material identification in three-energy-bin spectral CT was confirmed through both simulations and experimental studies.
In both noise-free and noisy simulations, the thickness estimation experiments and quantitative imaging results demonstrated high accuracy. In the thickness estimation experiment using the practical spectral CT system, the mean absolute error for the estimated thickness of the decomposed Al basis material was 0.014 ± 0.010 mm, with a mean relative error of 0.66% ± 0.42%. Similarly, for the decomposed polymethyl methacrylate (PMMA) basis material, the mean absolute error in thickness estimation was 0.064 ± 0.058 mm, with a mean relative error of 0.70% ± 0.38%. Additionally, employing the equivalent thickness of the basis material allowed for accurate synthesis of 70 keV virtual monoenergetic images (relative error 1.85% ± 1.26%), electron density (relative error 1.81% ± 0.97%), and effective atomic number (relative error 2.64% ± 1.26%) of the tested materials. In addition, the average synthesis error of the linear attenuation coefficient curves in the energy range from 40 to 150 keV was 1.89% ± 1.07%.
Both simulation and experimental results demonstrate the accurate generation of 70 keV virtual monoenergetic images, electron density, and effective atomic number images using the A-table method. Quantitative imaging results indicate that the YSO/SiPM-based photon-counting detector is capable of accurately reconstructing virtual monoenergetic images, electron density images, effective atomic number images, and linear attenuation coefficient curves, thereby achieving precise material identification.
目前的光子计数计算机断层扫描(CT)系统采用半导体探测器,如碲化镉(CdTe)、碲锌镉(CZT)和硅(Si),这些探测器直接将 X 射线光子转换为电荷脉冲。另一种方法是间接检测,它涉及硅酸钇(YSO)闪烁体与硅光电倍增管(SiPM)相结合。由于其成本低、检测效率高、暗计数率低、传感器增益高,因此这是一种具有吸引力和成本效益的选择。
本研究旨在利用我们小组开发的基于 YSO/SiPM 的多电压阈值(MVT)数字化仪的三能-bin 概念验证光子计数 CT 建立全面的定量成像框架,并评估这种光谱 CT 进行材料识别的可行性。
我们开发了一种基于 YSO/SiPM 的概念验证台式光谱 CT 系统,并建立了用于三能-bin 光子计数 CT 投影域处理的管道。采用经验 A 表法进行基物质分解,评估光谱 CT 系统的定量成像性能。该评估包括虚拟单能图像、电子密度图像、有效原子数图像和线性衰减系数曲线的合成误差。通过模拟和实验研究证实了 A 表方法在三能-bin 光谱 CT 中进行材料识别的有效性。
在无噪声和有噪声的模拟中,厚度估计实验和定量成像结果均表现出很高的准确性。在使用实际光谱 CT 系统进行厚度估计实验中,分解的铝基材料的估计厚度的平均绝对误差为 0.014±0.010mm,平均相对误差为 0.66%±0.42%。同样,对于分解的聚甲基丙烯酸甲酯(PMMA)基材料,厚度估计的平均绝对误差为 0.064±0.058mm,平均相对误差为 0.70%±0.38%。此外,通过基材料的等效厚度可以准确合成 70keV 的虚拟单能图像(相对误差 1.85%±1.26%)、电子密度(相对误差 1.81%±0.97%)和有效原子数(相对误差 2.64%±1.26%)。此外,在 40-150keV 的能量范围内,线性衰减系数曲线的平均合成误差为 1.89%±1.07%。
模拟和实验结果均表明,A 表法可准确生成 70keV 的虚拟单能图像、电子密度和有效原子数图像。定量成像结果表明,基于 YSO/SiPM 的光子计数探测器能够准确重建虚拟单能图像、电子密度图像、有效原子数图像和线性衰减系数曲线,从而实现精确的材料识别。