Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
Environ Res. 2024 Nov 15;261:119765. doi: 10.1016/j.envres.2024.119765. Epub 2024 Aug 10.
Anaerobic microbiologically influenced corrosion (MIC) of Fe (0) metals causes great harm to the environment and economy, which depends on the key electron transfer process between anaerobic microorganisms and Fe (0) metals. However, the key electron transfer process in microbiota dominating MIC remains unclear, especially for methanogenic microbiota wildly distributed in the environment. Herein, three different methanogenic microbiota (Methanothrix, Methanospirillum, and Methanobacterium) were acclimated to systematically investigate electron transfer pathways on corroding Q235A steel coupons. Results indicated that microbiota dominated by Methanothrix, Methanospirillum, or Methanobacterium accelerated the steel corrosion mainly through direct electron transfer (DET) pathway, H mediated electron transfer (HMET) pathway, and combined DET and HMET pathways, respectively. Compared with Methanospirillum dominant microbiota, Methanothrix or Methanobacterium dominant microbiota caused more methane production, higher weight loss, corrosion pits with larger areas, higher corrosion depth, and smaller corrosion pits density. Such results reflected that the DET process between microbiota and Fe (0) metals decided the biocorrosion degree and behavior of Fe (0) metals. This study insightfully elucidates the mechanisms of methanogenic microbiota on corroding steels, in turn providing new insights for anti-corrosion motives.
厌氧微生物影响的腐蚀(MIC)会对环境和经济造成严重危害,这取决于厌氧微生物和 Fe(0)金属之间的关键电子转移过程。然而,在主导 MIC 的微生物群中,关键的电子转移过程仍然不清楚,特别是在环境中广泛分布的产甲烷微生物群中。在此,我们驯化了三种不同的产甲烷微生物群(产甲烷菌属、产甲烷螺菌属和甲烷杆菌属),以系统地研究在腐蚀 Q235A 钢片上的电子转移途径。结果表明,以产甲烷菌属、产甲烷螺菌属或甲烷杆菌属为主导的微生物群主要通过直接电子转移(DET)途径、H 介导的电子转移(HMET)途径和 DET 和 HMET 途径的组合来加速钢的腐蚀。与产甲烷螺菌属为主导的微生物群相比,产甲烷菌属或甲烷杆菌属为主导的微生物群会产生更多的甲烷、更高的失重、更大面积的腐蚀坑、更深的腐蚀深度和更小的腐蚀坑密度。这些结果表明,微生物群与 Fe(0)金属之间的 DET 过程决定了 Fe(0)金属的生物腐蚀程度和行为。本研究深入阐明了产甲烷微生物群对腐蚀钢的作用机制,为防腐动机提供了新的见解。