Suppr超能文献

基于基因调控网络的图学习方法在单细胞 RNA-seq 数据中的细胞身份注释

A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data.

机构信息

College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

University of Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Genome Res. 2024 Aug 20;34(7):1036-1051. doi: 10.1101/gr.278439.123.

Abstract

Cell identity annotation for single-cell transcriptome data is a crucial process for constructing cell atlases, unraveling pathogenesis, and inspiring therapeutic approaches. Currently, the efficacy of existing methodologies is contingent upon specific data sets. Nevertheless, such data are often sourced from various batches, sequencing technologies, tissues, and even species. Notably, the gene regulatory relationship remains unaffected by the aforementioned factors, highlighting the extensive gene interactions within organisms. Therefore, we propose scHGR, an automated annotation tool designed to leverage gene regulatory relationships in constructing gene-mediated cell communication graphs for single-cell transcriptome data. This strategy helps reduce noise from diverse data sources while establishing distant cellular connections, yielding valuable biological insights. Experiments involving 22 scenarios demonstrate that scHGR precisely and consistently annotates cell identities, benchmarked against state-of-the-art methods. Crucially, scHGR uncovers novel subtypes within peripheral blood mononuclear cells, specifically from CD4 T cells and cytotoxic T cells. Furthermore, by characterizing a cell atlas comprising 56 cell types for COVID-19 patients, scHGR identifies vital factors like IL1 and calcium ions, offering insights for targeted therapeutic interventions.

摘要

单细胞转录组数据的细胞身份注释是构建细胞图谱、揭示发病机制和启发治疗方法的关键过程。目前,现有方法的效果取决于特定的数据集。然而,这些数据通常来自不同的批次、测序技术、组织,甚至物种。值得注意的是,基因调控关系不受上述因素的影响,这突出了生物体内广泛的基因相互作用。因此,我们提出了 scHGR,这是一种自动化注释工具,旨在利用基因调控关系构建单细胞转录组数据的基因介导的细胞通讯图谱。该策略有助于减少来自不同数据源的噪声,同时建立远距离的细胞连接,产生有价值的生物学见解。涉及 22 种情况的实验表明,scHGR 能够精确一致地注释细胞身份,与最先进的方法相媲美。至关重要的是,scHGR 在外周血单核细胞中发现了新型亚群,特别是在 CD4 T 细胞和细胞毒性 T 细胞中。此外,通过对包含 56 种细胞类型的 COVID-19 患者的细胞图谱进行特征描述,scHGR 鉴定出了白细胞介素 1 和钙离子等重要因素,为靶向治疗干预提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1799/11368180/8925ed3fcaae/1036f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验