Diao Faqi, Weng Huihui, Ampuero Jean-Paul, Shao Zhigang, Wang Rongjiang, Long Feng, Xiong Xiong
Hubei Subsurface Multi-Scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China.
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China.
Nat Commun. 2024 Aug 12;15(1):6908. doi: 10.1038/s41467-024-51313-w.
The seismic hazard of a fault system is controlled by the maximum possible earthquake magnitude it can host. However, existing methods to estimate maximum magnitudes can result in large uncertainties or ignore their temporal evolution. Here, we show how the maximum possible earthquake magnitude of a fault system can be assessed by combining high-resolution fault coupling maps with a physics-based model from three-dimensional dynamic fracture mechanics confirmed by dynamic rupture simulations. We demonstrate the method on the Anninghe-Zemuhe fault system in southwestern China, where dense near-fault geodetic data has been acquired. Our results show that this fault system currently has the potential to generate Mw7.0 earthquakes with maximum magnitudes increasing to Mw7.3 by 2200. These results are supported by the observed rupture extents and recurrence times of historical earthquakes and the b values of current seismicity. Our work provides a practical way to assess the earthquake potential of natural faults.
断层系统的地震危险性由其所能发生的最大可能地震震级控制。然而,现有的估算最大震级的方法可能会导致很大的不确定性,或者忽略其时间演化。在此,我们展示了如何通过将高分辨率断层耦合图与基于三维动态断裂力学的物理模型相结合来评估断层系统的最大可能地震震级,该模型已通过动态破裂模拟得到证实。我们在中国西南部的安宁河 - 则木河断层系统上演示了该方法,在那里已获取了密集的近断层大地测量数据。我们的结果表明,该断层系统目前有发生Mw7.0地震的潜力,到2200年最大震级将增加到Mw7.3。这些结果得到了历史地震的观测破裂范围和复发时间以及当前地震活动性的b值的支持。我们的工作为评估天然断层的地震潜力提供了一种实用方法。