Suppr超能文献

实时监测昆虫物种数量。

Towards real-time monitoring of insect species populations.

机构信息

Department of Urban Studies and Planning, Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, USA.

Senseable City Amsterdam, Amsterdam Institute for Advanced Metropolitan Solutions, Amsterdam, Netherlands.

出版信息

Sci Rep. 2024 Aug 12;14(1):18727. doi: 10.1038/s41598-024-68502-8.

Abstract

Insect biodiversity and abundance are in global decline, potentially leading to a crisis with profound ecological and economic consequences. Methods and technologies to monitor insect species to aid in preservation efforts are rapidly being developed yet their adoption has been slow and focused on specific use cases. We propose a computer vision model that works towards multi-objective insect species identification in real-time and on a large scale. We leverage an image data source with 16 million instances and a recent improvement in the YOLO computer vision architecture to present a quick and open-access method to develop visual AI models to monitor insect species across climatic regions.

摘要

昆虫生物多样性和数量正在全球范围内减少,这可能导致一场生态和经济后果都十分严重的危机。用于监测昆虫物种以辅助保护工作的方法和技术正在迅速发展,但这些方法和技术的采用速度缓慢,且重点关注特定用途。我们提出了一个计算机视觉模型,旨在实时、大规模地进行多目标昆虫物种识别。我们利用一个包含 1600 万实例的图像数据源和 YOLO 计算机视觉架构的最新改进,提供了一种快速且开放的方法来开发视觉人工智能模型,以监测跨气候区域的昆虫物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80c7/11319484/5640e790d53f/41598_2024_68502_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验