Liu Ou, Chen Piaoyi, Xiao Qinglin, Yue Chengfeng, Huang Yugang, Ye Guodong
The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
J Mol Model. 2024 Aug 13;30(9):306. doi: 10.1007/s00894-024-06104-x.
The challenge of activating inert allyl monomers for polymerization has persisted, prompting our proposal of the photo-driven radical mediated [3 + 2] cyclization reaction (PRMC). This innovative approach significantly expedites the homopolymerization of multi-allyl monomers, enabling the synthesis of embolic microspheres for hepatocellular carcinoma interventions. PRMC involves allyl monomers to form allylic radicals and then radicals participating in a cycloaddition reaction with unsaturated olefins as radicalophiles to form cyclopentane-based radical products. While extensively studied in the theoretical and experimental homopolymerization, PRMC's application in copolymerization remains unexplored. To address this knowledge gap, we explored the elementary reaction, selecting allyl methyl ether radicals (AMER) and α,β-unsaturated ketones as radicalophiles for copolymerization investigations by density functional theory (DFT) analysis. We quantified energy differences between ground and excited states of reactants, elucidated frontier molecular orbitals, and assessed thermodynamic data for copolymerization feasibility. We also evaluated the electronic properties of reactants, predicting the reactivity of radicalophiles and the interactions of intermolecular reactions. Additionally, we applied transition state theory and interaction/deformation models and conducted a local orbital analysis to comprehensively study excess electron distribution and gyration radius of cyclic radical product. Our findings offer vital insights into PRMC's potential in copolymerization. This research provides a robust theoretical foundation for practical application, enhancing the polymerization field.
Based on density functional theory (DFT), the calculations were performed at the M06-2X/6-311 + + G(d,p) level in/by Gaussian 16 package. Subsequently, our analytical results apply time-dependent density-functional theory (TD-DFT) and solvent modeling (SMD). Single-point energy calculations determine the driving force behind the radicals' reaction with radicalophiles. Furthermore, we assessed the electrostatic potential (ESP) of the reactants. The results of the calculations were visualized by the Multiwfn 3.6 and VMD 1.9 programs.
激活惰性烯丙基单体进行聚合反应一直是个挑战,这促使我们提出光驱动自由基介导的[3 + 2]环化反应(PRMC)。这种创新方法显著加速了多烯丙基单体的均聚反应,能够合成用于肝细胞癌干预的栓塞微球。PRMC涉及烯丙基单体形成烯丙基自由基,然后自由基与作为亲自由基试剂的不饱和烯烃发生环加成反应,形成基于环戊烷的自由基产物。虽然PRMC在理论和实验均聚反应方面得到了广泛研究,但其在共聚反应中的应用仍未被探索。为了填补这一知识空白,我们通过密度泛函理论(DFT)分析,探索了基本反应,选择烯丙基甲基醚自由基(AMER)和α,β - 不饱和酮作为亲自由基试剂进行共聚反应研究。我们量化了反应物基态和激发态之间的能量差异,阐明了前线分子轨道,并评估了共聚反应可行性的热力学数据。我们还评估了反应物的电子性质,预测了亲自由基试剂的反应性以及分子间反应的相互作用。此外,我们应用过渡态理论和相互作用/变形模型,并进行了局部轨道分析,以全面研究环状自由基产物的多余电子分布和回转半径。我们的研究结果为PRMC在共聚反应中的潜力提供了重要见解。这项研究为实际应用提供了坚实的理论基础,推动了聚合领域的发展。
基于密度泛函理论(DFT),在高斯16软件包中使用M06 - 2X/6 - 311 + + G(d,p)水平进行计算。随后,我们的分析结果应用了含时密度泛函理论(TD - DFT)和溶剂建模(SMD)。单点能量计算确定了自由基与亲自由基试剂反应背后的驱动力。此外,我们评估了反应物的静电势(ESP)。计算结果通过Multiwfn 3.6和VMD 1.9程序进行可视化。