Suppr超能文献

一种准确高效的预测 BODIPY 荧光染料电子激发能的方法。

An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes.

机构信息

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China.

出版信息

J Comput Chem. 2013 Mar 15;34(7):566-75. doi: 10.1002/jcc.23168. Epub 2012 Nov 1.

Abstract

Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research.

摘要

最近,极限学习机神经网络(ELMNN)作为一种有效的计算方法已被提出,成功地用于预测非线性光学性质(Wang 等人,J. Comput. Chem. 2012, 33, 231)。在这项工作中,我们首先采用 ELMNN 方法预测电子激发能。显著地,预测的 90 个 4,4-二氟-4-硼-3a,4a-二氮杂-s-茚并(BODIPY)衍生物的电子激发能的预测值与实验值之间的均方根偏差已减小至 0.13 eV。其次,在构建计算模型时考虑了四组分子描述符。结果表明,量子化学描述与电子激发能值具有最密切的内在关系。最后,我们构建了一个用户友好的网页服务器(EEEBPre:BODIPY 染料的电子激发能预测),可在网站:http://202.198.129.218 上免费访问。该网页服务器可以返回与实验值高度一致的 BODIPY 染料的预测电子激发能值。我们希望该网页服务器能对相关研究领域的理论和实验化学家有所帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验