Suppr超能文献

基于非增强 CT 最小衰减值预测无脂性腺瘤的模型的建立和验证:一项双中心回顾性研究。

Development and validation of a model predicting adrenal lipid-poor adenoma based on the minimum attenuation value from non-contrast CT: a dual-center retrospective study.

机构信息

Department of Radiology, Hangzhou Ninth People's Hospital (Hangzhou Red Cross Hospital Qiantang Campus), Hangzhou, 310012, China.

Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.

出版信息

BMC Med Imaging. 2024 Aug 12;24(1):210. doi: 10.1186/s12880-024-01392-4.

Abstract

OBJECTIVE

The early differentiation of adrenal lipid-poor adenomas from non-adenomas is a crucial step in reducing excessive examinations and treatments. This study seeks to construct an eXtreme Gradient Boosting (XGBoost) predictive model utilizing the minimum attenuation values (minAVs) from non-contrast CT (NCCT) scans to identify lipid-poor adenomas.

MATERIALS AND METHODS

Retrospective analysis encompassed clinical data, minAVs, CT histogram (CTh), mean attenuation values (meanAVs), and lesion diameter from patients with pathologically or clinically confirmed adrenal lipid-poor adenomas across two medical institutions, juxtaposed with non-adenomas. Variable selection transpired in Institution A (training set), with XGBoost models established based on minAVs and CTh separately. Institution B (validation set) corroborated the diagnostic efficacy of the two models. Receiver operator characteristic (ROC) curve analysis, calibration curves, and Brier scores assessed the diagnostic performance and calibration of the models, with the Delong test gauging differences in the area under the curve (AUC) between models. SHapley Additive exPlanations (SHAP) values elucidated and visualized the models.

RESULTS

The training set comprised 136 adrenal lipid-poor adenomas and 126 non-adenomas, while the validation set included 46 and 40 instances, respectively. In the training set, there were substantial inter-group differences in minAVs, CTh, meanAVs, diameter, and body mass index (BMI) (p < 0.05 for all). The AUC for the minAV and CTh models were 0.912 (95% confidence interval [CI]: 0.866-0.957) and 0.916 (95% CI: 0.873-0.958), respectively. Both models exhibited good calibration, with Brier scores of 0.141 and 0.136. In the validation set, the AUCs were 0.871 (95% CI: 0.792-0.951) and 0.878 (95% CI: 0.794-0.962), with Brier scores of 0.156 and 0.165, respectively. The Delong test revealed no statistically significant differences in AUC between the models (p > 0.05 for both). SHAP value analysis for the minAV model suggested that minAVs had the highest absolute weight (AW) and negative contribution.

CONCLUSION

The XGBoost predictive model based on minAVs demonstrates effective discrimination between adrenal lipid-poor adenomas and non-adenomas. The minAV variable is easily obtainable, and its diagnostic performance is comparable to that of the CTh model. This provides a basis for patient diagnosis and treatment plan selection.

摘要

目的

早期鉴别肾上腺乏脂性腺瘤与非腺瘤对于减少过度检查和治疗至关重要。本研究旨在构建一个基于非对比 CT(NCCT)扫描最小衰减值(minAV)的极端梯度提升(XGBoost)预测模型,以识别乏脂性腺瘤。

材料和方法

回顾性分析了来自两个医疗机构的经病理或临床证实的肾上腺乏脂性腺瘤患者的临床资料、minAV 值、CT 直方图(CTh)、平均衰减值(meanAV)和病灶直径,与非腺瘤进行对比。在机构 A(训练集)中进行变量选择,分别基于 minAV 和 CTh 建立 XGBoost 模型。机构 B(验证集)验证了两个模型的诊断效能。接受者操作特征(ROC)曲线分析、校准曲线和 Brier 评分评估了模型的诊断性能和校准,Delong 检验评估了模型间曲线下面积(AUC)的差异。Shapley Additive exPlanations(SHAP)值用于解释和可视化模型。

结果

训练集包括 136 例肾上腺乏脂性腺瘤和 126 例非腺瘤,验证集分别包括 46 例和 40 例。在训练集中,minAV、CTh、meanAV、直径和体重指数(BMI)在组间存在显著差异(p<0.05)。minAV 和 CTh 模型的 AUC 分别为 0.912(95%置信区间[CI]:0.866-0.957)和 0.916(95% CI:0.873-0.958)。两个模型均具有良好的校准,Brier 评分分别为 0.141 和 0.136。在验证集中,AUC 分别为 0.871(95% CI:0.792-0.951)和 0.878(95% CI:0.794-0.962),Brier 评分分别为 0.156 和 0.165。Delong 检验显示两个模型的 AUC 之间无统计学差异(p>0.05)。minAV 模型的 SHAP 值分析表明,minAVs 的绝对权重(AW)和负贡献最大。

结论

基于 minAV 的 XGBoost 预测模型能够有效鉴别肾上腺乏脂性腺瘤与非腺瘤。minAV 变量易于获取,其诊断性能与 CTh 模型相当。这为患者的诊断和治疗方案选择提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da1/11318272/975088141297/12880_2024_1392_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验