Medical Sciences Postgraduate Program, Universidade de Fortaleza- UNIFOR, Fortaleza, Ceará, Brazil.
Medical Program, Universidade de Fortaleza-UNIFOR, Fortaleza, Ceará, Brazil.
Crit Care. 2024 Aug 12;28(1):272. doi: 10.1186/s13054-024-05054-3.
The current definition of acute kidney injury (AKI) includes increased serum creatinine (sCr) concentration and decreased urinary output (UO). Recent studies suggest that the standard UO threshold of 0.5 ml/kg/h may be suboptimal. This study aimed to develop and validate a novel UO-based AKI classification system that improves mortality prediction and patient stratification.
Data were obtained from the MIMIC-IV and eICU databases. The development process included (1) evaluating UO as a continuous variable over 3-, 6-, 12-, and 24-h periods; (2) identifying 3 optimal UO cutoff points for each time window (stages 1, 2, and 3); (3) comparing sensitivity and specificity to develop a unified staging system; (4) assessing average versus persistent reduced UO hourly; (5) comparing the new UO-AKI system to the KDIGO UO-AKI system; (6) integrating sCr criteria with both systems and comparing them; and (7) validating the new classification with an independent cohort. In all these steps, the outcome was hospital mortality. Another analyzed outcome was 90-day mortality. The analyses included ROC curve analysis, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and logistic and Cox regression analyses.
From the MIMIC-IV database, 35,845 patients were included in the development cohort. After comparing the sensitivity and specificity of 12 different lowest UO thresholds across four time frames, 3 cutoff points were selected to compose the proposed UO-AKI classification: stage 1 (0.2-0.3 mL/kg/h), stage 2 (0.1-0.2 mL/kg/h), and stage 3 (< 0.1 mL/kg/h) over 6 h. The proposed classification had better discrimination when the average was used than when the persistent method was used. The adjusted odds ratio demonstrated a significant stepwise increase in hospital mortality with advancing UO-AKI stage. The proposed classification combined or not with the sCr criterion outperformed the KDIGO criteria in terms of predictive accuracy-AUC-ROC 0.75 (0.74-0.76) vs. 0.69 (0.68-0.70); NRI: 25.4% (95% CI: 23.3-27.6); and IDI: 4.0% (95% CI: 3.6-4.5). External validation with the eICU database confirmed the superior performance of the new classification system.
The proposed UO-AKI classification enhances mortality prediction and patient stratification in critically ill patients, offering a more accurate and practical approach than the current KDIGO criteria.
急性肾损伤(AKI)的现行定义包括血清肌酐(sCr)浓度升高和尿量(UO)减少。最近的研究表明,标准的 UO 阈值 0.5ml/kg/h 可能不够理想。本研究旨在开发和验证一种新的基于 UO 的 AKI 分类系统,以提高死亡率预测和患者分层能力。
数据来自 MIMIC-IV 和 eICU 数据库。开发过程包括:(1)评估 3 小时、6 小时、12 小时和 24 小时期间 UO 作为连续变量;(2)确定每个时间窗(1 期、2 期和 3 期)的 3 个最佳 UO 截止点;(3)比较敏感性和特异性以开发统一的分期系统;(4)评估平均与持续减少的 UO 每小时;(5)比较新的 UO-AKI 系统与 KDIGO UO-AKI 系统;(6)将 sCr 标准与两个系统相结合并进行比较;(7)用独立队列验证新的分类。在所有这些步骤中,结局是医院死亡率。另一个分析结果是 90 天死亡率。分析包括 ROC 曲线分析、净重新分类改善(NRI)、综合鉴别改善(IDI)、逻辑和 Cox 回归分析。
从 MIMIC-IV 数据库中,纳入了 35845 例患者用于开发队列。在比较了四个时间框架内 12 个不同最低 UO 阈值的敏感性和特异性后,选择了 3 个截止点来组成建议的 UO-AKI 分类:6 小时时的 1 期(0.2-0.3ml/kg/h)、2 期(0.1-0.2ml/kg/h)和 3 期(<0.1ml/kg/h)。当使用平均方法时,建议的分类方法比使用持续方法具有更好的区分度。调整后的优势比表明,随着 UO-AKI 分期的进展,医院死亡率呈显著递增趋势。与 KDIGO 标准相比,建议的分类方法与 sCr 标准相结合或不结合,在预测准确性-AUC-ROC 方面均表现更优,分别为 0.75(0.74-0.76)和 0.69(0.68-0.70);NRI:25.4%(95%CI:23.3-27.6);IDI:4.0%(95%CI:3.6-4.5)。使用 eICU 数据库进行外部验证,证实了新分类系统的优越性能。
与现行的 KDIGO 标准相比,建议的 UO-AKI 分类提高了危重症患者的死亡率预测和患者分层能力,提供了更准确和实用的方法。