Zhang Congfu, Wang Zhaolu, Zhang Changchang, Shi Wenjuan, Li Wei, Gao Ke, Liu Hongjun
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an 710119, China.
University of Chinese Academy of Sciences, Beijing 100084, China.
Nanoscale Horiz. 2024 Sep 23;9(10):1792-1803. doi: 10.1039/d4nh00240g.
Metamaterials have demonstrated significant potential for enhancing nonlinear processes at the nanoscale. The presence of narrowband hot-spots and highly inhomogeneous mode-field distributions often limit the enhancement of nonlinear interactions over larger spatial scales. This has posed a formidable challenge in achieving simultaneous enhancement across a broadband spectral range, significantly constraining the potential of photonic nanostructures in enhancing nonlinear frequency conversion. Here, we propose a broadband resonant mode matching method through near-field examinations that supports the multipole modes and enables the development of an ultrabroadband-enhanced 3-5 μm mid-infrared frequency upconversion technique utilizing a hyperbolic triangular pyramidal metasurface. The gap-plasma mode of the hyperbolic metamaterial multilayer system excites narrowly high-order resonances at near-infrared pump light wavelengths, while the slow-light effect generated by the dipoles achieves ultrabroadband near-field enhancement at mid-infrared wavelengths. The symmetry breaking of the triangular structure localizes these resonant modes at the tips, enabling mode-matched modulation at different wavelengths, and thus boosting the nonlinear frequency conversion process. Our approach provides a promising platform for metasurface-based frequency conversion techniques.
超材料已展现出在纳米尺度增强非线性过程的巨大潜力。窄带热点和高度不均匀的模式场分布的存在,常常限制了在更大空间尺度上非线性相互作用的增强。这在实现宽带光谱范围内的同时增强方面构成了一项艰巨挑战,极大地限制了光子纳米结构在增强非线性频率转换方面的潜力。在此,我们通过近场研究提出一种宽带共振模式匹配方法,该方法支持多极模式,并能够利用双曲三角锥超表面开发一种超宽带增强的3 - 5微米中红外频率上转换技术。双曲超材料多层系统的间隙等离子体模式在近红外泵浦光波长处激发窄带高阶共振,而偶极子产生的慢光效应在中红外波长处实现超宽带近场增强。三角形结构的对称性破缺将这些共振模式定位在尖端,从而实现不同波长的模式匹配调制,进而推动非线性频率转换过程。我们的方法为基于超表面的频率转换技术提供了一个有前景的平台。