Chalmers tvärgata 3, 412 58 Gothenburg, Sweden.
Math Med Biol. 2024 Sep 16;41(3):250-276. doi: 10.1093/imammb/dqae010.
Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation, chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell migration, and then applied to a real data set. We find that the inference method performs with a high degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.
多形性胶质母细胞瘤是一种高度侵袭性的脑癌,确诊患者的中位生存时间为 15 个月。这种癌症的治疗通常是放射治疗、化疗和肿瘤切除的结合。然而,胶质母细胞瘤的高度侵袭性和弥漫性使得手术干预变得困难,而且胶质母细胞瘤的扩散特性也知之甚少。在本文中,我们引入了一个随机相互作用的粒子系统作为体外胶质母细胞瘤迁移的模型,以及一个基于最大似然算法的设计,用于使用显微镜成像数据进行推断。该推断方法在癌症细胞迁移的计算机模拟中进行了评估,然后应用于实际数据集。我们发现,该推断方法在计算机模拟数据上具有很高的准确性,并且在体外数据集上取得了有希望的结果。