Wang Dehong, Zhang Fanheng, Zhang Shijing, Liu Daqing, Li Jing, Chen Weishan, Deng Jie, Liu Yingxiang
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China.
Adv Sci (Weinh). 2024 Oct;11(39):e2406956. doi: 10.1002/advs.202406956. Epub 2024 Aug 13.
Modular reconfigurable robots exhibit prominent advantages in the reconnaissance and exploration tasks within unstructured environments for their characteristics of high adaptability and high robustness. However, due to the limitations in locomotion mechanism and integration requirements, the modular design of miniature robots in the aquatic environment encounters significant challenges. Here, a modular strategy based on the synthetic jet principle is proposed, and a modular reconfigurable robot system is developed. Specialized bottom and side jet actuators are designed with vibration motors as excitation sources, and a motion module is developed incorporating the jet actuators to realize three-dimensional agile motion. Its linear, rotational, and ascending motion speeds reach 70.7 mm s, 3.3 rad s, and 28.7 mm s, respectively. The module integrates the power supply, communication, and control system with a small size of 48 mm × 38 mm × 38 mm, which ensures a wireless controllable motion. Then, various configurations of the multi-module robot system are established with corresponding motion schemes, and the experiments with replaceable intermediate modules are further conducted to verify the transportation and image-capturing functions. This work demonstrates the effectiveness of synthetic jet propulsion for aquatic modular reconfigurable robot systems, and it exhibits profound potential in future underwater applications.
模块化可重构机器人因其高适应性和高鲁棒性的特点,在非结构化环境中的侦察和探索任务中展现出显著优势。然而,由于运动机制和集成要求的限制,水生环境中微型机器人的模块化设计面临重大挑战。在此,提出了一种基于合成射流原理的模块化策略,并开发了一种模块化可重构机器人系统。以振动电机为激励源设计了专门的底部和侧面射流致动器,并开发了一个包含射流致动器的运动模块以实现三维敏捷运动。其直线、旋转和上升运动速度分别达到70.7毫米/秒、3.3弧度/秒和28.7毫米/秒。该模块集成了电源、通信和控制系统,尺寸小至48毫米×38毫米×38毫米,确保了无线可控运动。然后,建立了多模块机器人系统的各种配置及相应的运动方案,并进一步进行了可更换中间模块的实验,以验证运输和图像捕捉功能。这项工作证明了合成射流推进对水生模块化可重构机器人系统的有效性,并且在未来水下应用中具有巨大潜力。