Suppr超能文献

通过CO激光减轻相内催化域转移以增强硝酸盐到氨的电转化和锌-硝酸盐电池性能。

Mitigating Intraphase Catalytic-Domain Transfer via CO Laser for Enhanced Nitrate-to-Ammonia Electroconversion and Zn-Nitrate Battery Behavior.

作者信息

Lee Yeryeong, Theerthagiri Jayaraman, Yodsin Nuttapon, Min Ahreum, Moon Cheol Joo, Jungsuttiwong Siriporn, Choi Myong Yong

机构信息

Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.

Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.

出版信息

Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202413774. doi: 10.1002/anie.202413774. Epub 2024 Oct 14.

Abstract

Developing sustainable energy solutions is critical for addressing the dual challenges of energy demand and environmental impact. In this study, a zinc-nitrate (Zn-NO ) battery system was designed for the simultaneous production of ammonia (NH) via the electrocatalytic NO reduction reaction (NORR) and electricity generation. Continuous wave CO laser irradiation yielded precisely controlled CoFeO@nitrogen-doped carbon (CoFeO@NC) hollow nanocubes from CoFe Prussian blue analogs (CoFe-PBA) as the integral electrocatalyst for NORR in 1.0 M KOH, achieving a remarkable NH production rate of 10.9 mg h cm at -0.47 V versus Reversible Hydrogen Electrode with exceptional stability. In situ and ex situ methods revealed that the CoFeO@NC surface transformed into high-valent Fe/CoOOH active species, optimizing the adsorption energy of NORR (*NO and *NO species) intermediates. Furthermore, density functional theory calculations validated the possible NORR pathway on CoFeO@NC starting with NO conversion to *NO intermediates, followed by reduction to *NO. Subsequent protonation forms the *NH and *NH species, leading to NH formation via final protonation. The Zn-NO battery utilizing the CoFeO@NC cathode exhibits dual functionality by generating electricity with a stable open-circuit voltage of 1.38 V versus Zn/Zn and producing NH. This study highlights the innovative use of CO laser irradiation to transform Prussian blue analogs into cost-effective catalysts with hierarchical structures for NORR-to-NH conversion, positioning the Zn-NO battery as a promising technology for industrial applications.

摘要

开发可持续能源解决方案对于应对能源需求和环境影响这双重挑战至关重要。在本研究中,设计了一种硝酸锌(Zn-NO₃)电池系统,用于通过电催化NO₃⁻还原反应(NORR)同时生产氨(NH₃)和发电。连续波CO激光辐照由钴铁普鲁士蓝类似物(CoFe-PBA)制备出精确可控的CoFe₂O₄@氮掺杂碳(CoFe₂O₄@NC)空心纳米立方体,作为1.0 M KOH中NORR的整体电催化剂,相对于可逆氢电极在-0.47 V时实现了10.9 mg h⁻¹ cm⁻²的显著NH₃产率,且具有出色的稳定性。原位和非原位方法表明,CoFe₂O₄@NC表面转变为高价Fe/CoOOH活性物种,优化了NORR(NO₂和NO物种)中间体的吸附能。此外,密度泛函理论计算验证了CoFe₂O₄@NC上可能的NORR途径,始于NO₃⁻转化为NO₂中间体,随后还原为NO。随后的质子化形成NH₂和NH物种,通过最终质子化导致NH₃形成。利用CoFe₂O₄@NC阴极的Zn-NO₃电池具有双重功能,相对于Zn/Zn具有1.38 V的稳定开路电压发电并产生NH₃。本研究突出了CO激光辐照的创新应用,将普鲁士蓝类似物转化为具有分级结构的用于NORR到NH₃转化的经济高效催化剂,使Zn-NO₃电池成为工业应用中有前景的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验