Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA.
Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA.
J Virol. 2024 Sep 17;98(9):e0013724. doi: 10.1128/jvi.00137-24. Epub 2024 Aug 13.
Nucleoside-modified mRNA technology has revolutionized vaccine development with the success of mRNA COVID-19 vaccines. We used modified mRNA technology for the design of envelopes (Env) to induce HIV-1 broadly neutralizing antibodies (bnAbs). However, unlike SARS-CoV-2 neutralizing antibodies that are readily made, HIV-1 bnAb induction is disfavored by the immune system because of the rarity of bnAb B cell precursors and the cross-reactivity of bnAbs targeting certain Env epitopes with host molecules, thus requiring optimized immunogen design. The use of protein nanoparticles (NPs) has been reported to enhance B cell germinal center responses to HIV-1 Env. Here, we report our experience with the expression of Env-ferritin NPs compared with membrane-bound Env gp160 when encoded by modified mRNA. We found that well-folded Env-ferritin NPs were a minority of the protein expressed by an mRNA design and were immunogenic at 20 µg but minimally immunogenic in mice at 1 µg dose and were not expressed well in draining lymph nodes (LNs) following intramuscular immunization. In contrast, mRNA encoding gp160 was more immunogenic than mRNA encoding Env-NP at 1 µg dose and was expressed well in draining LN following intramuscular immunization. Thus, analysis of mRNA expression and immunogenicity at low doses are critical for the evaluation of mRNA designs for optimal immunogenicity of HIV-1 immunogens.IMPORTANCEAn effective HIV-1 vaccine that induces protective antibody responses remains elusive. We have used mRNA technology for designs of HIV-1 immunogens in the forms of membrane-bound full-length envelope gp160 and envelope ferritin nanoparticle. Here, we demonstrated in a mouse model that the membrane-bound form induced a better response than envelope ferritin nanoparticle because of higher protein expression. The significance of our research is in highlighting the importance of analysis of mRNA design expression and low-dose immunogenicity studies for HIV-1 immunogens before moving to vaccine clinical trials.
核苷修饰的 mRNA 技术通过成功开发 mRNA COVID-19 疫苗彻底改变了疫苗的开发。我们使用修饰的 mRNA 技术来设计包膜 (Env) 以诱导 HIV-1 广泛中和抗体 (bnAb)。然而,与易于产生的 SARS-CoV-2 中和抗体不同,由于 bnAb B 细胞前体的稀有性以及针对某些 Env 表位的 bnAb 与宿主分子的交叉反应性,免疫系统不利于 HIV-1 bnAb 的诱导,因此需要优化免疫原设计。据报道,使用蛋白质纳米颗粒 (NP) 可以增强 B 细胞生发中心对 HIV-1 Env 的反应。在这里,我们报告了我们在使用修饰的 mRNA 表达 Env-铁蛋白 NP 与膜结合的 Env gp160 时的经验。我们发现,在一种 mRNA 设计中,正确折叠的 Env-铁蛋白 NP 是表达的蛋白质的少数,在 20 µg 时具有免疫原性,但在 1 µg 剂量时在小鼠中免疫原性极小,并且在肌肉内免疫后引流淋巴结 (LN) 中表达不佳。相比之下,在 1 µg 剂量时,编码 gp160 的 mRNA 比编码 Env-NP 的 mRNA 更具免疫原性,并且在肌肉内免疫后在引流 LN 中表达良好。因此,在低剂量下分析 mRNA 表达和免疫原性对于评估 HIV-1 免疫原的最佳免疫原性至关重要。
能够诱导保护性抗体反应的有效 HIV-1 疫苗仍然难以捉摸。我们已经使用 mRNA 技术设计了 HIV-1 免疫原,其形式为膜结合全长包膜 gp160 和包膜铁蛋白纳米颗粒。在这里,我们在小鼠模型中证明,由于更高的蛋白质表达,膜结合形式比包膜铁蛋白纳米颗粒诱导出更好的反应。我们研究的意义在于强调在将 HIV-1 免疫原推进疫苗临床试验之前,分析 mRNA 设计表达和低剂量免疫原性研究对于 HIV-1 免疫原的重要性。