Suppr超能文献

配对关系:用于全景场景图生成的配对网络。

Pair Then Relation: Pair-Net for Panoptic Scene Graph Generation.

作者信息

Wang Jinghao, Wen Zhengyu, Li Xiangtai, Guo Zujin, Yang Jingkang, Liu Ziwei

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10452-10465. doi: 10.1109/TPAMI.2024.3442301. Epub 2024 Nov 6.

Abstract

Panoptic Scene Graph (PSG) is a challenging task in Scene Graph Generation (SGG) that aims to create a more comprehensive scene graph representation using panoptic segmentation instead of boxes. Compared to SGG, PSG has several challenging problems: pixel-level segment outputs and full relationship exploration (It also considers thing and stuff relation). Thus, current PSG methods have limited performance, which hinders downstream tasks or applications. This work aims to design a novel and strong baseline for PSG. To achieve that, we first conduct an in-depth analysis to identify the bottleneck of the current PSG models, finding that inter-object pair-wise recall is a crucial factor that was ignored by previous PSG methods. Based on this and the recent query-based frameworks, we present a novel framework: Pair then Relation (Pair-Net), which uses a Pair Proposal Network (PPN) to learn and filter sparse pair-wise relationships between subjects and objects. Moreover, we also observed the sparse nature of object pairs for both. Motivated by this, we design a lightweight Matrix Learner within the PPN, which directly learns pair-wised relationships for pair proposal generation. Through extensive ablation and analysis, our approach significantly improves upon leveraging the segmenter solid baseline. Notably, our method achieves over 10% absolute gains compared to our baseline, PSGFormer.

摘要

全景场景图(PSG)是场景图生成(SGG)中的一项具有挑战性的任务,其旨在使用全景分割而非边界框来创建更全面的场景图表示。与SGG相比,PSG存在几个具有挑战性的问题:像素级分割输出和完整关系探索(它还考虑事物与物质的关系)。因此,当前的PSG方法性能有限,这阻碍了下游任务或应用。这项工作旨在为PSG设计一种新颖且强大的基线。为实现这一目标,我们首先进行深入分析以确定当前PSG模型的瓶颈,发现对象间成对召回率是先前PSG方法忽略的一个关键因素。基于此以及最近的基于查询的框架,我们提出了一种新颖的框架:先成对再关系(Pair-Net),它使用成对提议网络(PPN)来学习和过滤主体与对象之间稀疏的成对关系。此外,我们还观察到两者对象对的稀疏性质。受此启发,我们在PPN中设计了一个轻量级矩阵学习器,它直接学习用于生成成对提议的成对关系。通过广泛的消融实验和分析,我们的方法在利用分割器坚实基线的基础上有显著改进。值得注意的是,与我们的基线PSGFormer相比,我们的方法实现了超过10%的绝对增益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验