Suppr超能文献

通过氢中毒效应改善硝酸盐到氨的电催化作用。

Improved Nitrate-to-Ammonia Electrocatalysis through Hydrogen Poisoning Effects.

作者信息

Li Yuefei, Tan Yuan, Zhang Mingkai, Hu Jun, Chen Zhong, Su Laisuo, Li Jiayuan

机构信息

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China.

School of Chemical Engineering, Northwest University, Xi'an, 710069, China.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202411068. doi: 10.1002/anie.202411068. Epub 2024 Sep 17.

Abstract

Electrochemical conversion from nitrate to ammonia is a key step in sustainable ammonia production. However, it suffers from low productive efficiency or high energy consumption due to a lack of desired electrocatalysts. Here we report nickel cobalt phosphide (NiCoP) catalysts for nitrate-to-ammonia electrocatalysis that display a record-high catalytic current density of -702±7 mA cm, ammonia production rate of 5415±26 mmol g  h and Faraday efficiency of 99.7±0.2 % at -0.3 V vs. RHE, affording the estimated energy consumption as low as 22.7 kWh kg . Theoretical and experimental results reveal that these catalysts benefit from hydrogen poisoning effects, which leave behind catalytically inert adsorbed hydrogen species (H*) at Co-hollow sites and thereupon enable ideally reactive H* at secondary Co-P sites. The dimerization between H* and H* for H evolution is blocked due to the catalytic inertia of H* thereby the H* drives nitrate hydrogenation timely. With these catalysts, the continuous ammonia production is further shown in an electrolyser with a real energy consumption of 18.9 kWh kg .

摘要

从硝酸盐到氨的电化学转化是可持续氨生产的关键步骤。然而,由于缺乏理想的电催化剂,该过程存在生产效率低或能耗高的问题。在此,我们报道了用于硝酸盐到氨电催化的磷化镍钴(NiCoP)催化剂,在相对于可逆氢电极(RHE)为-0.3V时,其催化电流密度达到创纪录的-702±7 mA cm,氨产率为5415±26 mmol g h,法拉第效率为99.7±0.2%,估计能耗低至22.7 kWh kg 。理论和实验结果表明,这些催化剂得益于氢中毒效应,在钴空心位点留下催化惰性的吸附氢物种(H*),从而在二级钴磷位点产生理想的活性H*。由于H的催化惰性,H与H之间的析氢二聚化被阻断,因此H及时驱动硝酸盐加氢。使用这些催化剂,在实际能耗为18.9 kWh kg的电解槽中进一步实现了连续氨生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验