Suppr超能文献

可逆氢受体-供体实现硝酸盐到氨电催化的接力机制

Reversible Hydrogen Acceptor-Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis.

作者信息

Li Yuefei, Liu Ye, Zhang Mingkai, Li Linsen, Jiang Zhao, Han Bingying, Wang Baojun, Li Jiayuan

机构信息

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China.

State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202417631. doi: 10.1002/anie.202417631. Epub 2024 Nov 11.

Abstract

Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HWO) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HWO lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol g  h and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kg . Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kg .

摘要

电催化硝酸盐还原是可持续制氨的关键过程。然而,为了最大化氨的产率效率,该技术不可避免地在相对于可逆氢电极(RHE)低于0 V的电位下运行,导致高能耗和竞争性析氢。为了解决这个问题,作为可逆氢供体 - 受体的氢钨青铜(HWO)与铜(Cu)结合,在相对于RHE高于0 V的电位下实现接力机制,这涉及氢快速插入HWO晶格、晶格氢迅速脱嵌并转移到铜上,以及在铜上自发发生氢介导的硝酸盐到氨的转化。所得催化剂在相对于RHE为0.10 V时表现出3332.9±34.1 mmol g h的高氨产率和~100%的法拉第效率,显示出估计能耗低至17.6 kWh kg 。使用这些催化剂,我们在放大的流动池中以17.0 kWh kg的实际能耗实现了连续制氨。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验