Morinaka Yuta, Ito Hideto, Fujimoto Kazuhiro J, Yanai Takeshi, Ono Yohei, Tanaka Tsuyoshi, Itami Kenichiro
Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, Hayakawa, Ayase, Kanagawa, 252-1123, Japan.
Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202409619. doi: 10.1002/anie.202409619. Epub 2024 Sep 20.
Hole-transporting materials (HTMs) are essential for optoelectronic devices, such as organic light-emitting diodes (OLEDs), dye-sensitized solar cells, and perovskite solar cells. Triarylamines have been employed as HTMs since they were introduced in 1987. However, heteroatoms or side chains embedded in the core skeleton of triarylamines can cause thermal and chemical stability problems. Herein, we report that hexabenzo[a,c,fg,j,l,op]tetracene (HBT), a small nonplanar nanographene, functions as a hydrocarbon HTM with hole transport properties that match those of triarylamine-based HTMs. X-ray structural analysis and theoretical calculations revealed effective multidirectional orbital interactions and transfer integrals for HBT. In-depth experimental and theoretical analyses revealed that the nonplanarity-inducing annulative π-extension can achieve not only a stable amorphous state in bulk films, but also a higher increase in the highest occupied molecular orbital level than conventional linear or cyclic π-extension. Furthermore, an in-house manufactured HBT-based OLED exhibited excellent performance, featuring superior curves for current density-voltage, external quantum efficiency-luminance, and lifetime compared to those of representative triarylamine-based OLEDs. A notable improvement in device lifetime was observed for the HBT-based OLED, highlighting the advantages of the hydrocarbon HTM. This study demonstrates the immense potential of small nonplanar nanographenes for optoelectronic device applications.
空穴传输材料(HTMs)对于诸如有机发光二极管(OLEDs)、染料敏化太阳能电池和钙钛矿太阳能电池等光电器件至关重要。自从1987年被引入以来,三芳基胺一直被用作空穴传输材料。然而,嵌入三芳基胺核心骨架中的杂原子或侧链可能会导致热稳定性和化学稳定性问题。在此,我们报道了六苯并[a,c,fg,j,l,op]四并苯(HBT),一种小型非平面纳米石墨烯,作为一种具有与三芳基胺基空穴传输材料相匹配的空穴传输特性的碳氢化合物空穴传输材料发挥作用。X射线结构分析和理论计算揭示了HBT有效的多方向轨道相互作用和转移积分。深入的实验和理论分析表明,诱导非平面性的累积π-扩展不仅可以在本体薄膜中实现稳定的非晶态,而且与传统的线性或环状π-扩展相比,可以使最高占据分子轨道能级有更高的提升。此外,内部制造的基于HBT的OLED表现出优异的性能,与代表性的基于三芳基胺的OLED相比,在电流密度-电压、外量子效率-亮度和寿命方面具有更优的曲线。基于HBT的OLED在器件寿命方面有显著改善,突出了碳氢化合物空穴传输材料的优势。这项研究证明了小型非平面纳米石墨烯在光电器件应用中的巨大潜力。